Shriphani Palakodety


2021

pdf bib
Empathy and Hope: Resource Transfer to Model Inter-country Social Media Dynamics
Clay H. Yoo | Shriphani Palakodety | Rupak Sarkar | Ashiqur KhudaBukhsh
Proceedings of the 1st Workshop on NLP for Positive Impact

The ongoing COVID-19 pandemic resulted in significant ramifications for international relations ranging from travel restrictions, global ceasefires, and international vaccine production and sharing agreements. Amidst a wave of infections in India that resulted in a systemic breakdown of healthcare infrastructure, a social welfare organization based in Pakistan offered to procure medical-grade oxygen to assist India - a nation which was involved in four wars with Pakistan in the past few decades. In this paper, we focus on Pakistani Twitter users’ response to the ongoing healthcare crisis in India. While #IndiaNeedsOxygen and #PakistanStandsWithIndia featured among the top-trending hashtags in Pakistan, divisive hashtags such as #EndiaSaySorryToKashmir simultaneously started trending. Against the backdrop of a contentious history including four wars, divisive content of this nature, especially when a country is facing an unprecedented healthcare crisis, fuels further deterioration of relations. In this paper, we define a new task of detecting supportive content and demonstrate that existing NLP for social impact tools can be effectively harnessed for such tasks within a quick turnaround time. We also release the first publicly available data set at the intersection of geopolitical relations and a raging pandemic in the context of India and Pakistan.

2020

pdf bib
Annotation Efficient Language Identification from Weak Labels
Shriphani Palakodety | Ashiqur KhudaBukhsh
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

India is home to several languages with more than 30m speakers. These languages exhibit significant presence on social media platforms. However, several of these widely-used languages are under-addressed by current Natural Language Processing (NLP) models and resources. User generated social media content in these languages is also typically authored in the Roman script as opposed to the traditional native script further contributing to resource scarcity. In this paper, we leverage a minimally supervised NLP technique to obtain weak language labels from a large-scale Indian social media corpus leading to a robust and annotation-efficient language-identification technique spanning nine Romanized Indian languages. In fast-spreading pandemic situations such as the current COVID-19 situation, information processing objectives might be heavily tilted towards under-served languages in densely populated regions. We release our models to facilitate downstream analyses in these low-resource languages. Experiments across multiple social media corpora demonstrate the model’s robustness and provide several interesting insights on Indian language usage patterns on social media. We release an annotated data set of 1,000 comments in ten Romanized languages as a social media evaluation benchmark.