Shuicheng Yan
2024
LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement
Jiahao Ying
|
Mingbao Lin
|
Yixin Cao
|
Wei Tang
|
Bo Wang
|
Qianru Sun
|
Xuanjing Huang
|
Shuicheng Yan
Findings of the Association for Computational Linguistics: EMNLP 2024
This paper introduces the innovative “LLMs-as-Instructors” framework, which leverages the advanced Large Language Models (LLMs) to autonomously enhance the training of smaller target models. Inspired by the theory of “Learning from Errors”, this framework employs an instructor LLM to meticulously analyze the specific errors within a target model, facilitating targeted and efficient training cycles. Within this framework, we implement two strategies: “Learning from Error,” which focuses solely on incorrect responses to tailor training data, and “Learning from Error by Contrast,” which uses contrastive learning to analyze both correct and incorrect responses for a deeper understanding of errors. Our empirical studies, conducted with several open-source models, demonstrate significant improvements across multiple benchmarks, including mathematical reasoning, coding abilities, and factual knowledge. Notably, the refined Llama-3-8b-Instruction has outperformed ChatGPT, illustrating the effectiveness of our approach. By leveraging the strengths of both strategies, we have attained a more balanced performance improvement on both in-domain and out-of-domain benchmarks.
2023
Generative Table Pre-training Empowers Models for Tabular Prediction
Tianping Zhang
|
Shaowen Wang
|
Shuicheng Yan
|
Li Jian
|
Qian Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Recently, the topic of table pre-training has attracted considerable research interest. However, how to employ table pre-training to boost the performance of tabular prediction remains an open challenge. In this paper, we propose TapTap, the first attempt that leverages table pre-training to empower models for tabular prediction. After pre-training on a large corpus of real-world tabular data, TapTap can generate high-quality synthetic tables to support various applications on tabular data, including privacy protection, low resource regime, missing value imputation, and imbalanced classification. Extensive experiments on 12 datasets demonstrate that TapTap outperforms a total of 16 baselines in different scenarios. Meanwhile, it can be easily combined with various backbone models, including LightGBM, Multilayer Perceptron (MLP) and Transformer. Moreover, with the aid of table pre-training, models trained using synthetic data generated by TapTap can even compete with models using the original dataset on half of the experimental datasets, marking a milestone in the development of synthetic tabular data generation. The code and datasets are available at https://github.com/ZhangTP1996/TapTap.
Search
Co-authors
- Tianping Zhang 1
- Shaowen Wang 1
- Li Jian 1
- Qian Liu 1
- Jiahao Ying 1
- show all...