Shumin Zhai
2024
Neural Search Space in Gboard Decoder
Yanxiang Zhang
|
Yuanbo Zhang
|
Haicheng Sun
|
Yun Wang
|
Gary Sivek
|
Shumin Zhai
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track
Gboard Decoder produces suggestions by looking for paths that best match input touch points on the context aware search space, which is backed by the language Finite State Transducers (FST). The language FST is currently an N-gram language model (LM). However, N-gram LMs, limited in context length, are known to have sparsity problem under device model size constraint. In this paper, we propose Neural Search Space which substitutes the N-gram LM with a Neural Network LM (NN-LM) and dynamically constructs the search space during decoding. Specifically, we integrate the long range context awareness of NN-LM into the search space by converting its outputs given context, into the language FST at runtime. This involves language FST structure redesign, pruning strategies tuning, and data structure optimizations. Online experiments demonstrate improved quality results, reducing Words Modified Ratio by [0.26%, 1.19%] on various locales with acceptable latency increases. This work opens new avenues for further improving keyboard decoding quality by enhancing neural LM more directly.
Proofread: Fixes All Errors with One Tap
Renjie Liu
|
Yanxiang Zhang
|
Yun Zhu
|
Haicheng Sun
|
Yuanbo Zhang
|
Michael Huang
|
Shanqing Cai
|
Lei Meng
|
Shumin Zhai
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
The impressive capabilities in Large Language Models (LLMs) provide a powerful approach to reimagine users’ typing experience. This paper demonstrates the Proofread feature in Gboard, a virtual keyboard running on mobile phones. Proofread enables seamless sentence-level and paragraph-level corrections with a single tap. We describe the complete system in this paper, from data generation, metrics design to model tuning and deployment. To obtain models with sufficient quality, we implement a careful data synthetic pipeline tailored to online use cases, design multifaceted metrics, employ a two-stage tuning approach to acquire the dedicated LLM for the feature: the Supervised Fine Tuning (SFT) for foundational quality, followed by the Reinforcement Learning (RL) tuning approach for targeted refinement. Specifically, we find sequential tuning on Rewrite and proofread tasks yields the best quality in SFT stage, and propose global and direct rewards in the RL tuning stage to seek further improvement. Extensive experiments on a human-labeled golden set showed our tuned PaLM2-XS model achieved 85.56% good ratio. We launched the feature to Pixel 8 devices by serving the model on TPU v5 in Google Cloud, with thousands of daily active users. Serving latency was significantly reduced by quantization, bucket inference, text segmentation, and speculative decoding. Our demo could be seen in Youtube.
Search
Co-authors
- Yanxiang Zhang 2
- Yuanbo Zhang 2
- Haicheng Sun 2
- Yun Wang 1
- Gary Sivek 1
- show all...