Shuo Guan
2023
Extract, Select and Rewrite: A Modular Sentence Summarization Method
Shuo Guan
|
Vishakh Padmakumar
Proceedings of the 4th New Frontiers in Summarization Workshop
A modular approach has the advantage of being compositional and controllable, comparing to most end-to-end models. In this paper we propose Extract-Select-Rewrite (ESR), a three-phase abstractive sentence summarization method. We decompose summarization into three stages: (i) knowledge extraction, where we extract relation triples from the text using off-the-shelf tools; (ii) content selection, where a subset of triples are selected; and (iii) rewriting, where the selected triple are realized into natural language. Our results demonstrates that ESR is competitive with the best end-to-end models while being more faithful. %than these baseline models. Being modular, ESR’s modules can be trained on separate data which is beneficial in low-resource settings and enhancing the style controllability on text generation.
2021
Knowledge and Keywords Augmented Abstractive Sentence Summarization
Shuo Guan
Proceedings of the Third Workshop on New Frontiers in Summarization
In this paper, we study the abstractive sentence summarization. There are two essential information features that can influence the quality of news summarization, which are topic keywords and the knowledge structure of the news text. Besides, the existing knowledge encoder has poor performance on sparse sentence knowledge structure. Considering these, we propose KAS, a novel Knowledge and Keywords Augmented Abstractive Sentence Summarization framework. Tri-encoders are utilized to integrate contexts of original text, knowledge structure and keywords topic simultaneously, with a special linearized knowledge structure. Automatic and human evaluations demonstrate that KAS achieves the best performances.