Shuo Ma
2020
Meta-Reinforced Multi-Domain State Generator for Dialogue Systems
Yi Huang
|
Junlan Feng
|
Min Hu
|
Xiaoting Wu
|
Xiaoyu Du
|
Shuo Ma
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
A Dialogue State Tracker (DST) is a core component of a modular task-oriented dialogue system. Tremendous progress has been made in recent years. However, the major challenges remain. The state-of-the-art accuracy for DST is below 50% for a multi-domain dialogue task. A learnable DST for any new domain requires a large amount of labeled in-domain data and training from scratch. In this paper, we propose a Meta-Reinforced Multi-Domain State Generator (MERET). Our first contribution is to improve the DST accuracy. We enhance a neural model based DST generator with a reward manager, which is built on policy gradient reinforcement learning (RL) to fine-tune the generator. With this change, we are able to improve the joint accuracy of DST from 48.79% to 50.91% on the MultiWOZ corpus. Second, we explore to train a DST meta-learning model with a few domains as source domains and a new domain as target domain. We apply the model-agnostic meta-learning algorithm (MAML) to DST and the obtained meta-learning model is used for new domain adaptation. Our experimental results show this solution is able to outperform the traditional training approach with extremely less training data in target domain.
Towards Low-Resource Semi-Supervised Dialogue Generation with Meta-Learning
Yi Huang
|
Junlan Feng
|
Shuo Ma
|
Xiaoyu Du
|
Xiaoting Wu
Findings of the Association for Computational Linguistics: EMNLP 2020
In this paper, we propose a meta-learning based semi-supervised explicit dialogue state tracker (SEDST) for neural dialogue generation, denoted as MEDST. Our main motivation is to further bridge the chasm between the need for high accuracy dialogue state tracker and the common reality that only scarce annotated data is available for most real-life dialogue tasks. Specifically, MEDST has two core steps: meta-training with adequate unlabelled data in an automatic way and meta-testing with a few annotated data by supervised learning. In particular, we enhance SEDST via entropy regularization, and investigate semi-supervised learning frameworks based on model-agnostic meta-learning (MAML) that are able to reduce the amount of required intermediate state labelling. We find that by leveraging un-annotated data in meta-way instead, the amount of dialogue state annotations can be reduced below 10% while maintaining equivalent system performance. Experimental results show MEDST outperforms SEDST substantially by 18.7% joint goal accuracy and 14.3% entity match rate on the KVRET corpus with 2% labelled data in semi-supervision.