Shuyang Jiang


2024

pdf bib
EvoR: Evolving Retrieval for Code Generation
Hongjin Su | Shuyang Jiang | Yuhang Lai | Haoyuan Wu | Boao Shi | Che Liu | Qian Liu | Tao Yu
Findings of the Association for Computational Linguistics: EMNLP 2024

Recently the retrieval-augmented generation (RAG) has been successfully applied in code generation. However, existing pipelines for retrieval-augmented code generation (RACG) employ static knowledge bases with a single source, limiting the adaptation capabilities of Large Language Models (LLMs) to domains they have insufficient knowledge of. In this work, we develop a novel pipeline, EVOR, that employs the synchronous evolution of both queries and diverse knowledge bases. On two realistic settings where the external knowledge is required to solve code generation tasks, we compile four new datasets associated with frequently updated libraries and long-tail programming languages, named EVOR-BENCH. Extensive experiments demonstrate that EVOR achieves two to four times of execution accuracy compared to other methods such as Reflexion (Shinn et al., 2024), DocPrompting (Zhou et al., 2023), etc. We demonstrate that EVOR is flexible and can be easily combined with them to achieve further improvement. Further analysis reveals that EVOR benefits from the synchronous evolution of queries and documents and the diverse information sources in the knowledge base. We hope that our studies will inspire more insights into the design of advanced RACG pipelines in future research.

pdf bib
MedCare: Advancing Medical LLMs through Decoupling Clinical Alignment and Knowledge Aggregation
Yusheng Liao | Shuyang Jiang | Zhe Chen | Yu Wang | Yanfeng Wang
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) have shown substantial progress in natural language understanding and generation, proving valuable especially in the medical field. Despite advancements, challenges persist due to the complexity and diversity inherent in medical tasks, which can be categorized as knowledge-intensive tasks and alignment-required tasks. Previous approaches either ignore the latter task or focus on a minority of tasks and hence lose generalization. To address these drawbacks, we propose a progressive fine-tuning pipeline. This pipeline employs a and a to encode diverse knowledge in the first stage and filter out detrimental information. In the second stage, we drop the to avoid the interference of suboptimal representation and leverage an additional alignment module optimized towards an orthogonal direction to the knowledge space to mitigate knowledge forgetting. Based on this two-stage paradigm, we proposed a Medical LLM through decoupling Clinical Alignment and Knowledge Aggregation (), which is designed to achieve promising performance on over 20 medical tasks, as well as results on specific medical alignment tasks. Various model sizes of (1.8B, 7B, 14B) all demonstrate significant improvements over existing models with similar model sizes. Our code and datasets are available at https://github.com/BlueZeros/MedCare.

2023

pdf bib
Self-Improvement of Non-autoregressive Model via Sequence-Level Distillation
Yusheng Liao | Shuyang Jiang | Yiqi Li | Yu Wang | Yanfeng Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Although Non-autoregressive Transformer (NAT) models have achieved great success in terms of fast inference speed, this speedup comes with a performance drop due to the inherent multi-modality problem of the NAT model. Previous works commonly alleviate this problem by replacing the target side of the raw data with distilled data generated by Autoregressive Transformer (AT) models. However, the multi-modality problem in the distilled data is still significant and thus limits further improvement of the NAT models. In this paper, we propose a method called Sequence-Level Self-Distillation (SLSD), which aims to generate distilled data by the NAT model itself, eliminating the need for additional teacher networks. Furthermore, SLSD can adapt to different NAT models without precise adjustments since the self-distilled data is generated from the same types of NAT models. We conduct extensive experiments on WMT14 ENDE and WMT16 ENRO and choose four classic NAT models as the backbones to validate the generality and effectiveness of SLSD. The results show that our approach can consistently improve all models on both raw data and distilled data without sacrificing the inference speed.