Sina Gholamian
2024
LLM-Based Robust Product Classification in Commerce and Compliance
Sina Gholamian
|
Gianfranco Romani
|
Bartosz Rudnikowicz
|
Stavroula Skylaki
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)
Product classification is a crucial task in international trade, as compliance regulations are verified and taxes and duties are applied based on product categories. Manual classification of products is time-consuming and error-prone, and the sheer volume of products imported and exported renders the manual process infeasible. Consequently, e-commerce platforms and enterprises involved in international trade have turned to automatic product classification using machine learning. However, current approaches do not consider the real-world challenges associated with product classification, such as very abbreviated and incomplete product descriptions. In addition, recent advancements in generative Large Language Models (LLMs) and their reasoning capabilities are mainly untapped in product classification and e-commerce. In this research, we explore the real-life challenges of industrial classification and we propose data perturbations that allow for realistic data simulation. Furthermore, we employ LLM-based product classification to improve the robustness of the prediction in presence of incomplete data. Our research shows that LLMs with in-context learning outperform the supervised approaches in the clean-data scenario. Additionally, we illustrate that LLMs are significantly more robust than the supervised approaches when data attacks are present.
2023
A Comparative Study of Prompting Strategies for Legal Text Classification
Ali Hakimi Parizi
|
Yuyang Liu
|
Prudhvi Nokku
|
Sina Gholamian
|
David Emerson
Proceedings of the Natural Legal Language Processing Workshop 2023
In this study, we explore the performance oflarge language models (LLMs) using differ-ent prompt engineering approaches in the con-text of legal text classification. Prior researchhas demonstrated that various prompting tech-niques can improve the performance of a di-verse array of tasks done by LLMs. However,in this research, we observe that professionaldocuments, and in particular legal documents,pose unique challenges for LLMs. We experi-ment with several LLMs and various promptingtechniques, including zero/few-shot prompting,prompt ensembling, chain-of-thought, and ac-tivation fine-tuning and compare the perfor-mance on legal datasets. Although the newgeneration of LLMs and prompt optimizationtechniques have been shown to improve gener-ation and understanding of generic tasks, ourfindings suggest that such improvements maynot readily transfer to other domains. Specifi-cally, experiments indicate that not all prompt-ing approaches and models are well-suited forthe legal domain which involves complexitiessuch as long documents and domain-specificlanguage.
Search
Fix data
Co-authors
- David Emerson 1
- Ali Hakimi Parizi 1
- Yuyang Liu 1
- Prudhvi Nokku 1
- Gianfranco Romani 1
- show all...