Sneha Nallani
2020
A Fully Expanded Dependency Treebank for Telugu
Sneha Nallani
|
Manish Shrivastava
|
Dipti Sharma
Proceedings of the WILDRE5– 5th Workshop on Indian Language Data: Resources and Evaluation
Treebanks are an essential resource for syntactic parsing. The available Paninian dependency treebank(s) for Telugu is annotated only with inter-chunk dependency relations and not all words of a sentence are part of the parse tree. In this paper, we automatically annotate the intra-chunk dependencies in the treebank using a Shift-Reduce parser based on Context Free Grammar rules for Telugu chunks. We also propose a few additional intra-chunk dependency relations for Telugu apart from the ones used in Hindi treebank. Annotating intra-chunk dependencies finally provides a complete parse tree for every sentence in the treebank. Having a fully expanded treebank is crucial for developing end to end parsers which produce complete trees. We present a fully expanded dependency treebank for Telugu consisting of 3220 sentences. In this paper, we also convert the treebank annotated with Anncorra part-of-speech tagset to the latest BIS tagset. The BIS tagset is a hierarchical tagset adopted as a unified part-of-speech standard across all Indian Languages. The final treebank is made publicly available.
A Simple and Effective Dependency Parser for Telugu
Sneha Nallani
|
Manish Shrivastava
|
Dipti Sharma
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
We present a simple and effective dependency parser for Telugu, a morphologically rich, free word order language. We propose to replace the rich linguistic feature templates used in the past approaches with a minimal feature function using contextual vector representations. We train a BERT model on the Telugu Wikipedia data and use vector representations from this model to train the parser. Each sentence token is associated with a vector representing the token in the context of that sentence and the feature vectors are constructed by concatenating two token representations from the stack and one from the buffer. We put the feature representations through a feedforward network and train with a greedy transition based approach. The resulting parser has a very simple architecture with minimal feature engineering and achieves state-of-the-art results for Telugu.
Search