Sohan De Sarkar


2018

pdf bib
Attending Sentences to detect Satirical Fake News
Sohan De Sarkar | Fan Yang | Arjun Mukherjee
Proceedings of the 27th International Conference on Computational Linguistics

Satirical news detection is important in order to prevent the spread of misinformation over the Internet. Existing approaches to capture news satire use machine learning models such as SVM and hierarchical neural networks along with hand-engineered features, but do not explore sentence and document difference. This paper proposes a robust, hierarchical deep neural network approach for satire detection, which is capable of capturing satire both at the sentence level and at the document level. The architecture incorporates pluggable generic neural networks like CNN, GRU, and LSTM. Experimental results on real world news satire dataset show substantial performance gains demonstrating the effectiveness of our proposed approach. An inspection of the learned models reveals the existence of key sentences that control the presence of satire in news.