Song Shuangyong
Also published as: 双永 宋
2024
基于上下文学习与思维链策略的中文空间语义理解
Wang Shiquan (王士权)
|
Fu Weiwei (付薇薇)
|
Fang Ruiyu (方瑞玉)
|
Li Mengxiang (李孟祥)
|
He Zhongjiang (何忠江)
|
Li Yongxiang (李永翔)
|
Song Shuangyong (宋双永)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
“本技术报告详细介绍了我们团队参加第四届中文空间语义理解评测(SpaCE2024)的方法和成果。SpaCE2024旨在全面测试机器对中文空间语义的理解能力,包括空间信息实体识别、空间信息实体识别、空间信息异常识别、空间方位信息推理和空间异形同义识别五个不同的任务。我们团队采用精心设计的prompt并结合微调的方式激发大语言模型的空间语义理解能力,构建了一个高效的空间语义理解系统。在最终的评估中,我们在空间信息实体识别题目中准确率为0.8947,在空间信息实体识别题目中准确率为0.9364,在空间信息异常识别题目中准确率为0.8480,在空间方位信息推理题目中准确率为0.3471,在空间异形同义识别题目中准确率为0.5631,测试集综合准确率为0.6024,排名第一。”
基于大小模型结合与半监督自训练方法的古文事件抽取
Fu Weiwei (付薇薇)
|
Wang Shiquan (王士权)
|
Fang Ruiyu (方瑞玉)
|
Li Mengxiang (李孟祥)
|
He Zhongjiang (何忠江)
|
Li Yongxiang (李永翔)
|
Song Shuangyong (宋双永)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
“本文描述了队伍“TeleAI”在CCL2024古文历史事件类型抽取评测任务(CHED2024)中提交的参赛系统。该任务旨在自动识别出古代文本中的事件触发词与事件类型,其中事件类型判别被分为粗粒度和细粒度的事件类型判别两部分。为了提高古文历史事件类型抽取的性能,我们结合了大模型和小模型,并采用了半监督自训练的方法。在最终的评估中,我们在触发词识别任务得分0.763,粗粒度事件类型判别任务得分0.842,细粒度事件类型判别任务得分0.779,综合得分0.791,在所有单项任务和综合评分上均排名第一。”