Sonja Gievska


2025

pdf bib
Style Knowledge Graph: Augmenting Text Style Transfer with Knowledge Graphs
Martina Toshevska | Slobodan Kalajdziski | Sonja Gievska
Proceedings of the Workshop on Generative AI and Knowledge Graphs (GenAIK)

Text style transfer is the task of modifying the stylistic attributes of a given text while preserving its original meaning. This task has also gained interest with the advent of large language models. Although knowledge graph augmentation has been explored in various tasks, its potential for enhancing text style transfer has received limited attention. This paper proposes a method to create a Style Knowledge Graph (SKG) to facilitate and improve text style transfer. The SKG captures words, their attributes, and relations in a particular style, that serves as a knowledge resource to augment text style transfer. We conduct baseline experiments to evaluate the effectiveness of the SKG for augmenting text style transfer by incorporating relevant parts from the SKG in the prompt. The preliminary results demonstrate its potential for enhancing content preservation and style transfer strength in text style transfer tasks, while the results on fluency indicate promising outcomes with some room for improvement. We hope that the proposed SKG and the initial experiments will inspire further research in the field.

2019

pdf bib
Team Ned Leeds at SemEval-2019 Task 4: Exploring Language Indicators of Hyperpartisan Reporting
Bozhidar Stevanoski | Sonja Gievska
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper reports an experiment carried out to investigate the relevance of several syntactic, stylistic and pragmatic features on the task of distinguishing between mainstream and partisan news articles. The results of the evaluation of different feature sets and the extent to which various feature categories could affect the performance metrics are discussed and compared. Among different combinations of features and classifiers, Random Forest classifier using vector representations of the headline and the text of the report, with the inclusion of 8 readability scores and few stylistic features yielded best result, ranking our team at the 9th place at the SemEval 2019 Hyperpartisan News Detection challenge.

pdf bib
AndrejJan at SemEval-2019 Task 7: A Fusion Approach for Exploring the Key Factors pertaining to Rumour Analysis
Andrej Janchevski | Sonja Gievska
Proceedings of the 13th International Workshop on Semantic Evaluation

The viral spread of false, unverified and misleading information on the Internet has attracted a heightened attention of an interdisciplinary research community on the phenomenon. This paper contributes to the research efforts of automatically determining the veracity of rumourous tweets and classifying their replies according to stance. Our research objective was to investigate the interplay between a number of phenomenological and contextual features of rumours, in particular, we explore the extent to which network structural characteristics, metadata and user profiles could complement the linguistic analysis of the written content for the task at hand. The current findings strongly demonstrate that supplementary sources of information play significant role in classifying the veracity and the stance of Twitter interactions deemed to be rumourous.