Sophie Decher


2022

pdf bib
NLP4ITF @ Causal News Corpus 2022: Leveraging Linguistic Information for Event Causality Classification
Theresa Krumbiegel | Sophie Decher
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

We present our submission to Subtask 1 of theCASE-2022 Shared Task 3: Event CausalityIdentification with Causal News Corpus as partof the 5th Workshop on Challenges and Applicationsof Automated Extraction of SociopoliticalEvents from Text (CASE 2022) (Tanet al., 2022a). The task focuses on causal eventclassification on the sentence level and involvesdifferentiating between sentences that include acause-effect relation and sentences that do not. We approached this as a binary text classificationtask and experimented with multiple trainingsets augmented with additional linguisticinformation. Our best model was generated bytraining roberta-base on a combination ofdata from both Subtasks 1 and 2 with the additionof named entity annotations. During thedevelopment phase we achieved a macro F1 of0.8641 with this model on the development setprovided by the task organizers. When testingthe model on the final test data, we achieved amacro F1 of 0.8516.
Search
Co-authors
Venues