Few-shot text classification aims to classify inputs whose label has only a few examples. Previous studies overlooked the semantic relevance between label representations. Therefore, they are easily confused by labels that are relevant. To address this problem, we propose a method that generates distinct label representations that embed information specific to each label. Our method is applicable to conventional few-shot classification models. Experimental results show that our method significantly improved the performance of few-shot text classification across models and datasets.
We reduce the model size of pre-trained word embeddings by a factor of 200 while preserving its quality. Previous studies in this direction created a smaller word embedding model by reconstructing pre-trained word representations from those of subwords, which allows to store only a smaller number of subword embeddings in the memory. However, previous studies that train the reconstruction models using only target words cannot reduce the model size extremely while preserving its quality. Inspired by the observation of words with similar meanings having similar embeddings, our reconstruction training learns the global relationships among words, which can be employed in various models for word embedding reconstruction. Experimental results on word similarity benchmarks show that the proposed method improves the performance of the all subword-based reconstruction models.
Advanced pre-trained models for text representation have achieved state-of-the-art performance on various text classification tasks. However, the discrepancy between the semantic similarity of texts and labelling standards affects classifiers, i.e. leading to lower performance in cases where classifiers should assign different labels to semantically similar texts. To address this problem, we propose a simple multitask learning model that uses negative supervision. Specifically, our model encourages texts with different labels to have distinct representations. Comprehensive experiments show that our model outperforms the state-of-the-art pre-trained model on both single- and multi-label classifications, sentence and document classifications, and classifications in three different languages.