Stefano Soatto
2024
DocKD: Knowledge Distillation from LLMs for Open-World Document Understanding Models
Sungnyun Kim
|
Haofu Liao
|
Srikar Appalaraju
|
Peng Tang
|
Zhuowen Tu
|
Ravi Kumar Satzoda
|
R. Manmatha
|
Vijay Mahadevan
|
Stefano Soatto
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Visual document understanding (VDU) is a challenging task that involves understanding documents across various modalities (text and image) and layouts (forms, tables, etc.). This study aims to enhance generalizability of small VDU models by distilling knowledge from LLMs. We identify that directly prompting LLMs often fails to generate informative and useful data. In response, we present a new framework (called DocKD) that enriches the data generation process by integrating external document knowledge. Specifically, we provide an LLM with various document elements like key-value pairs, layouts, and descriptions, to elicit open-ended answers. Our experiments show that DocKD produces high-quality document annotations and surpasses the direct knowledge distillation approach that does not leverage external document knowledge. Moreover, student VDU models trained with solely DocKD-generated data is not only comparable to those trained with human-annotated data on in-domain tasks but also significantly excel them on out-of-domain tasks.
2021
Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing Regressions In NLP Model Updates
Yuqing Xie
|
Yi-An Lai
|
Yuanjun Xiong
|
Yi Zhang
|
Stefano Soatto
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Behavior of deep neural networks can be inconsistent between different versions. Regressions during model update are a common cause of concern that often over-weigh the benefits in accuracy or efficiency gain. This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates. Using negative flip rate as regression measure, we show that regression has a prevalent presence across tasks in the GLUE benchmark. We formulate the regression-free model updates into a constrained optimization problem, and further reduce it into a relaxed form which can be approximately optimized through knowledge distillation training method. We empirically analyze how model ensemble reduces regression. Finally, we conduct CheckList behavioral testing to understand the distribution of regressions across linguistic phenomena, and the efficacy of ensemble and distillation methods.
Search
Fix data
Co-authors
- Srikar Appalaraju 1
- Sungnyun Kim 1
- Yi-An Lai 1
- Haofu Liao 1
- Vijay Mahadevan 1
- show all...