Subhro Das
2023
Reliable Gradient-free and Likelihood-free Prompt Tuning
Maohao Shen
|
Soumya Ghosh
|
Prasanna Sattigeri
|
Subhro Das
|
Yuheng Bu
|
Gregory Wornell
Findings of the Association for Computational Linguistics: EACL 2023
Due to privacy or commercial constraints, large pre-trained language models (PLMs) are often offered as black-box APIs. Fine-tuning such models to downstream tasks is challenging because one can neither access the model’s internal representations nor propagate gradients through it. This paper addresses these challenges by developing techniques for adapting PLMs with only API access. Building on recent work on soft prompt tuning, we develop methods to tune the soft prompts without requiring gradient computation. Further, we develop extensions that in addition to not requiring gradients also do not need to access any internal representation of the PLM beyond the input embeddings. Moreover, instead of learning a single prompt, our methods learn a distribution over prompts allowing us to quantify predictive uncertainty. Ours is the first work to consider uncertainty in prompts when only having API access to the PLM. Finally, through extensive experiments, we carefully vet the proposed methods and find them competitive with (and sometimes even improving on) gradient-based approaches with full access to the PLM.
2021
A Research Framework for Understanding Education-Occupation Alignment with NLP Techniques
Renzhe Yu
|
Subhro Das
|
Sairam Gurajada
|
Kush Varshney
|
Hari Raghavan
|
Carlos Lastra-Anadon
Proceedings of the 1st Workshop on NLP for Positive Impact
Understanding the gaps between job requirements and university curricula is crucial for improving student success and institutional effectiveness in higher education. In this context, natural language processing (NLP) can be leveraged to generate granular insights into where the gaps are and how they change. This paper proposes a three-dimensional research framework that combines NLP techniques with economic and educational research to quantify the alignment between course syllabi and job postings. We elaborate on key technical details of the framework and further discuss its potential positive impacts on practice, including unveiling the inequalities in and long-term consequences of education-occupation alignment to inform policymakers, and fostering information systems to support students, institutions and employers in the school-to-work pipeline.
Search
Fix data
Co-authors
- Yuheng Bu 1
- Soumya Sankar Ghosh 1
- Sairam Gurajada 1
- Carlos Lastra-Anadon 1
- Hari Raghavan 1
- show all...