The rapid advancement of large language models (LLMs) has highlighted the need for robust evaluation frameworks that assess their core capabilities, such as reasoning, knowledge, and commonsense, leading to the inception of certain widely-used benchmark suites such as the H6 benchmark. However, these benchmark suites are primarily built for the English language, and there exists a lack thereof for under-represented languages, in terms of LLM development, such as Thai. On the other hand, developing LLMs for Thai should also include enhancing the cultural understanding as well as core capabilities. To address these dual challenge in Thai LLM research, we propose two key benchmarks: Thai-H6 and Thai Cultural and Linguistic Intelligence Benchmark (ThaiCLI). Through a thorough evaluation of various LLMs with multi-lingual capabilities, we provide a comprehensive analysis of the proposed benchmarks and how they contribute to Thai LLM development. Furthermore, we have made both the datasets and evaluation code publicly available to encourage further research and development for Thai LLMs.
This paper introduces the Open Ko-LLM Leaderboard and the Ko-H5 Benchmark as vital tools for evaluating Large Language Models (LLMs) in Korean. Incorporating private test sets while mirroring the English Open LLM Leaderboard, we establish a robust evaluation framework that has been well integrated in the Korean LLM community. We perform data leakage analysis that shows the benefit of private test sets along with a correlation study within the Ko-H5 benchmark and temporal analyses of the Ko-H5 score. Moreover, we present empirical support for the need to expand beyond set benchmarks. We hope the Open Ko-LLM Leaderboard sets precedent for expanding LLM evaluation to foster more linguistic diversity.
We introduce SOLAR 10.7B, a large language model (LLM) with 10.7 billion parameters, demonstrating superior performance in various natural language processing (NLP) tasks. Inspired by recent efforts to efficiently up-scale LLMs, we present a method for scaling LLMs called depth up-scaling (DUS), which encompasses depthwise scaling and continued pretraining. In contrast to other LLM up-scaling methods that use mixture-of-experts, DUS does not require complex changes to train and inference efficiently. We show experimentally that DUS is simple yet effective in scaling up high-performance LLMs from small ones. Building on the DUS model, we additionally present SOLAR 10.7B-Instruct, a variant fine-tuned for instruction-following capabilities, surpassing Mixtral-8x7B-Instruct. SOLAR 10.7B is publicly available under the Apache 2.0 license, promoting broad access and application in the LLM field.