Surabhi Datta
2022
A Cross-document Coreference Dataset for Longitudinal Tracking across Radiology Reports
Surabhi Datta
|
Hio Cheng Lam
|
Atieh Pajouhi
|
Sunitha Mogalla
|
Kirk Roberts
Proceedings of the Thirteenth Language Resources and Evaluation Conference
This paper proposes a new cross-document coreference resolution (CDCR) dataset for identifying co-referring radiological findings and medical devices across a patient’s radiology reports. Our annotated corpus contains 5872 mentions (findings and devices) spanning 638 MIMIC-III radiology reports across 60 patients, covering multiple imaging modalities and anatomies. There are a total of 2292 mention chains. We describe the annotation process in detail, highlighting the complexities involved in creating a sizable and realistic dataset for radiology CDCR. We apply two baseline methods–string matching and transformer language models (BERT)–to identify cross-report coreferences. Our results indicate the requirement of further model development targeting better understanding of domain language and context to address this challenging and unexplored task. This dataset can serve as a resource to develop more advanced natural language processing CDCR methods in the future. This is one of the first attempts focusing on CDCR in the clinical domain and holds potential in benefiting physicians and clinical research through long-term tracking of radiology findings.
2020
Rad-SpatialNet: A Frame-based Resource for Fine-Grained Spatial Relations in Radiology Reports
Surabhi Datta
|
Morgan Ulinski
|
Jordan Godfrey-Stovall
|
Shekhar Khanpara
|
Roy F. Riascos-Castaneda
|
Kirk Roberts
Proceedings of the Twelfth Language Resources and Evaluation Conference
This paper proposes a representation framework for encoding spatial language in radiology based on frame semantics. The framework is adopted from the existing SpatialNet representation in the general domain with the aim to generate more accurate representations of spatial language used by radiologists. We describe Rad-SpatialNet in detail along with illustrating the importance of incorporating domain knowledge in understanding the varied linguistic expressions involved in different radiological spatial relations. This work also constructs a corpus of 400 radiology reports of three examination types (chest X-rays, brain MRIs, and babygrams) annotated with fine-grained contextual information according to this schema. Spatial trigger expressions and elements corresponding to a spatial frame are annotated. We apply BERT-based models (BERT-Base and BERT- Large) to first extract the trigger terms (lexical units for a spatial frame) and then to identify the related frame elements. The results of BERT- Large are decent, with F1 of 77.89 for spatial trigger extraction and an overall F1 of 81.61 and 66.25 across all frame elements using gold and predicted spatial triggers respectively. This frame-based resource can be used to develop and evaluate more advanced natural language processing (NLP) methods for extracting fine-grained spatial information from radiology text in the future.
A Hybrid Deep Learning Approach for Spatial Trigger Extraction from Radiology Reports
Surabhi Datta
|
Kirk Roberts
Proceedings of the Third International Workshop on Spatial Language Understanding
Radiology reports contain important clinical information about patients which are often tied through spatial expressions. Spatial expressions (or triggers) are mainly used to describe the positioning of radiographic findings or medical devices with respect to some anatomical structures. As the expressions result from the mental visualization of the radiologist’s interpretations, they are varied and complex. The focus of this work is to automatically identify the spatial expression terms from three different radiology sub-domains. We propose a hybrid deep learning-based NLP method that includes – 1) generating a set of candidate spatial triggers by exact match with the known trigger terms from the training data, 2) applying domain-specific constraints to filter the candidate triggers, and 3) utilizing a BERT-based classifier to predict whether a candidate trigger is a true spatial trigger or not. The results are promising, with an improvement of 24 points in the average F1 measure compared to a standard BERT-based sequence labeler.
Search
Fix data
Co-authors
- Kirk Roberts 3
- Jordan Godfrey-Stovall 1
- Shekhar Khanpara 1
- Hio Cheng Lam 1
- Sunitha Mogalla 1
- show all...