Swetha Valli


2023

pdf bib
Overview of the Second Shared Task on Speech Recognition for Vulnerable Individuals in Tamil
Bharathi B | Bharathi Raja Chakravarthi | Subalalitha Cn | Sripriya Natarajan | Rajeswari Natarajan | S Suhasini | Swetha Valli
Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion

This paper manifest the overview of the shared task on Speech Recognition for Vulnerable individuals in Tamil(LT-EDI-ACL2023). Task is provided with an Tamil dataset, which is collected from elderly people of three different genders, male, female and transgender. The audio samples were recorded from the public locations like hospitals, markets, vegetable shop, etc. The dataset is released in two phase, training and testing phase. The partcipants were asked to use different models and methods to handle audio signals and submit the result as transcription of the test samples given. The result submitted by the participants was evaluated using WER (Word Error Rate). The participants used the transformer-based model for automatic speech recognition. The results and different pre-trained transformer based models used by the participants is discussed in this overview paper.

2022

pdf bib
Findings of the Shared Task on Speech Recognition for Vulnerable Individuals in Tamil
Bharathi B | Bharathi Raja Chakravarthi | Subalalitha Cn | Sripriya N | Arunaggiri Pandian | Swetha Valli
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

This paper illustrates the overview of the sharedtask on automatic speech recognition in the Tamillanguage. In the shared task, spontaneousTamil speech data gathered from elderly andtransgender people was given for recognitionand evaluation. These utterances were collected from people when they communicatedin the public locations such as hospitals, markets, vegetable shop, etc. The speech corpusincludes utterances of male, female, and transgender and was split into training and testingdata. The given task was evaluated using WER(Word Error Rate). The participants used thetransformer-based model for automatic speechrecognition. Different results using differentpre-trained transformer models are discussedin this overview paper.

pdf bib
Findings of the Shared Task on Multi-task Learning in Dravidian Languages
Bharathi Raja Chakravarthi | Ruba Priyadharshini | Subalalitha Cn | Sangeetha S | Malliga Subramanian | Kogilavani Shanmugavadivel | Parameswari Krishnamurthy | Adeep Hande | Siddhanth U Hegde | Roshan Nayak | Swetha Valli
Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages

We present our findings from the first shared task on Multi-task Learning in Dravidian Languages at the second Workshop on Speech and Language Technologies for Dravidian Languages. In this task, a sentence in any of three Dravidian Languages is required to be classified into two closely related tasks namely Sentiment Analyis (SA) and Offensive Language Identification (OLI). The task spans over three Dravidian Languages, namely, Kannada, Malayalam, and Tamil. It is one of the first shared tasks that focuses on Multi-task Learning for closely related tasks, especially for a very low-resourced language family such as the Dravidian language family. In total, 55 people signed up to participate in the task, and due to the intricate nature of the task, especially in its first iteration, 3 submissions have been received.