Tatiana Tsygankova
2021
Building Low-Resource NER Models Using Non-Speaker Annotations
Tatiana Tsygankova
|
Francesca Marini
|
Stephen Mayhew
|
Dan Roth
Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances
In low-resource natural language processing (NLP), the key problems are a lack of target language training data, and a lack of native speakers to create it. Cross-lingual methods have had notable success in addressing these concerns, but in certain common circumstances, such as insufficient pre-training corpora or languages far from the source language, their performance suffers. In this work we propose a complementary approach to building low-resource Named Entity Recognition (NER) models using “non-speaker” (NS) annotations, provided by annotators with no prior experience in the target language. We recruit 30 participants in a carefully controlled annotation experiment with Indonesian, Russian, and Hindi. We show that use of NS annotators produces results that are consistently on par or better than cross-lingual methods built on modern contextual representations, and have the potential to outperform with additional effort. We conclude with observations of common annotation patterns and recommended implementation practices, and motivate how NS annotations can be used in addition to prior methods for improved performance.
2019
ner and pos when nothing is capitalized
Stephen Mayhew
|
Tatiana Tsygankova
|
Dan Roth
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
For those languages which use it, capitalization is an important signal for the fundamental NLP tasks of Named Entity Recognition (NER) and Part of Speech (POS) tagging. In fact, it is such a strong signal that model performance on these tasks drops sharply in common lowercased scenarios, such as noisy web text or machine translation outputs. In this work, we perform a systematic analysis of solutions to this problem, modifying only the casing of the train or test data using lowercasing and truecasing methods. While prior work and first impressions might suggest training a caseless model, or using a truecaser at test time, we show that the most effective strategy is a concatenation of cased and lowercased training data, producing a single model with high performance on both cased and uncased text. As shown in our experiments, this result holds across tasks and input representations. Finally, we show that our proposed solution gives an 8% F1 improvement in mention detection on noisy out-of-domain Twitter data.
BSNLP2019 Shared Task Submission: Multisource Neural NER Transfer
Tatiana Tsygankova
|
Stephen Mayhew
|
Dan Roth
Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing
This paper describes the Cognitive Computation (CogComp) Group’s submissions to the multilingual named entity recognition shared task at the Balto-Slavic Natural Language Processing (BSNLP) Workshop. The final model submitted is a multi-source neural NER system with multilingual BERT embeddings, trained on the concatenation of training data in various Slavic languages (as well as English). The performance of our system on the official testing data suggests that multi-source approaches consistently outperform single-source approaches for this task, even with the noise of mismatching tagsets.