Thorsten Ries
2023
Mrs. Dalloway Said She Would Segment the Chapters Herself
Peiqi Sui
|
Lin Wang
|
Sil Hamilton
|
Thorsten Ries
|
Kelvin Wong
|
Stephen Wong
Proceedings of the 5th Workshop on Narrative Understanding
This paper proposes a sentiment-centric pipeline to perform unsupervised plot extraction on non-linear novels like Virginia Woolf’s Mrs. Dalloway, a novel widely considered to be “plotless. Combining transformer-based sentiment analysis models with statistical testing, we model sentiment’s rate-of-change and correspondingly segment the novel into emotionally self-contained units qualitatively evaluated to be meaningful surrogate pseudo-chapters. We validate our findings by evaluating our pipeline as a fully unsupervised text segmentation model, achieving a F-1 score of 0.643 (regional) and 0.214 (exact) in chapter break prediction on a validation set of linear novels with existing chapter structures. In addition, we observe notable differences between the distributions of predicted chapter lengths in linear and non-linear fictional narratives, with the latter exhibiting significantly greater variability. Our results hold significance for narrative researchers appraising methods for extracting plots from non-linear novels.