Tianchi Bi


2021

pdf bib
RoBLEURT Submission for WMT2021 Metrics Task
Yu Wan | Dayiheng Liu | Baosong Yang | Tianchi Bi | Haibo Zhang | Boxing Chen | Weihua Luo | Derek F. Wong | Lidia S. Chao
Proceedings of the Sixth Conference on Machine Translation

In this paper, we present our submission to Shared Metrics Task: RoBLEURT (Robustly Optimizing the training of BLEURT). After investigating the recent advances of trainable metrics, we conclude several aspects of vital importance to obtain a well-performed metric model by: 1) jointly leveraging the advantages of source-included model and reference-only model, 2) continuously pre-training the model with massive synthetic data pairs, and 3) fine-tuning the model with data denoising strategy. Experimental results show that our model reaching state-of-the-art correlations with the WMT2020 human annotations upon 8 out of 10 to-English language pairs.

2019

pdf bib
Multi-agent Learning for Neural Machine Translation
Tianchi Bi | Hao Xiong | Zhongjun He | Hua Wu | Haifeng Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Conventional Neural Machine Translation (NMT) models benefit from the training with an additional agent, e.g., dual learning, and bidirectional decoding with one agent decod- ing from left to right and the other decoding in the opposite direction. In this paper, we extend the training framework to the multi-agent sce- nario by introducing diverse agents in an in- teractive updating process. At training time, each agent learns advanced knowledge from others, and they work together to improve translation quality. Experimental results on NIST Chinese-English, IWSLT 2014 German- English, WMT 2014 English-German and large-scale Chinese-English translation tasks indicate that our approach achieves absolute improvements over the strong baseline sys- tems and shows competitive performance on all tasks.