Tianyun Zhang
Also published as: TianYun Zhang
2025
GLoCIM: Global-view Long Chain Interest Modeling for news recommendation
Zhen Yang
|
Wenhui Wang
|
Tao Qi
|
Peng Zhang
|
TianYun Zhang
|
Ru Zhang
|
Jianyi Liu
|
Yongfeng Huang
Proceedings of the 31st International Conference on Computational Linguistics
Accurately recommending candidate news articles to users has always been the core challenge of news recommendation system. News recommendations often require modeling of user interest to match candidate news. Recent efforts have primarily focused on extracting local subgraph information in a global click graph constructed by the clicked news sequence of all users. However, the computational complexity of extracting global click graph information has hindered the ability to utilize far-reaching linkage which is hidden between two distant nodes in global click graph collaboratively among similar users. To overcome the problem above, we propose a Global-view Long Chain Interests Modeling for news recommendation (GLoCIM), which combines neighbor interest with long chain interest distilled from a global click graph, leveraging the collaboration among similar users to enhance news recommendation. We therefore design a long chain selection algorithm and long chain interest encoder to obtain global-view long chain interest from the global click graph. We design a gated network to integrate long chain interest with neighbor interest to achieve the collaborative interest among similar users. Subsequently we aggregate it with local news category-enhanced representation to generate final user representation. Then candidate news representation can be formed to match user representation to achieve news recommendation. Experimental results on real-world datasets validate the effectiveness of our method to improve the performance of news recommendation.
2020
Efficient Transformer-based Large Scale Language Representations using Hardware-friendly Block Structured Pruning
Bingbing Li
|
Zhenglun Kong
|
Tianyun Zhang
|
Ji Li
|
Zhengang Li
|
Hang Liu
|
Caiwen Ding
Findings of the Association for Computational Linguistics: EMNLP 2020
Pretrained large-scale language models have increasingly demonstrated high accuracy on many natural language processing (NLP) tasks. However, the limited weight storage and computational speed on hardware platforms have impeded the popularity of pretrained models, especially in the era of edge computing. In this work, we propose an efficient transformer-based large-scale language representation using hardware-friendly block structure pruning. We incorporate the reweighted group Lasso into block-structured pruning for optimization. Besides the significantly reduced weight storage and computation, the proposed approach achieves high compression rates. Experimental results on different models (BERT, RoBERTa, and DistilBERT) on the General Language Understanding Evaluation (GLUE) benchmark tasks show that we achieve up to 5.0x with zero or minor accuracy degradation on certain task(s). Our proposed method is also orthogonal to existing compact pretrained language models such as DistilBERT using knowledge distillation, since a further 1.79x average compression rate can be achieved on top of DistilBERT with zero or minor accuracy degradation. It is suitable to deploy the final compressed model on resource-constrained edge devices.
Search
Fix data
Co-authors
- Caiwen Ding 1
- Yongfeng Huang 1
- Zhenglun Kong 1
- Bingbing Li 1
- Ji Li 1
- show all...