Tobias Pütz
2019
Tüpa at SemEval-2019 Task1: (Almost) feature-free Semantic Parsing
Tobias Pütz
|
Kevin Glocker
Proceedings of the 13th International Workshop on Semantic Evaluation
Our submission for Task 1 ‘Cross-lingual Semantic Parsing with UCCA’ at SemEval-2018 is a feed-forward neural network that builds upon an existing state-of-the-art transition-based directed acyclic graph parser. We replace most of its features by deep contextualized word embeddings and introduce an approximation to represent non-terminal nodes in the graph as an aggregation of their terminal children. We further demonstrate how augmenting data using the baseline systems provides a consistent advantage in all open submission tracks. We submitted results to all open tracks (English, in- and out-of-domain, German in-domain and French in-domain, low-resource). Our system achieves competitive performance in all settings besides the French, where we did not augment the data. Post-evaluation experiments showed that data augmentation is especially crucial in this setting.
Search