Tomás Bernal-beltrán
2024
UMUTeam at SemEval-2024 Task 6: Leveraging Zero-Shot Learning for Detecting Hallucinations and Related Observable Overgeneration Mistakes
Ronghao Pan
|
José Antonio García-díaz
|
Tomás Bernal-beltrán
|
Rafael Valencia-garcía
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
In these working notes we describe the UMUTeam’s participation in SemEval-2024 shared task 6, which aims at detecting grammatically correct output of Natural Language Generation with incorrect semantic information in two different setups: model-aware and model-agnostic tracks. The task is consists of three subtasks with different model setups. Our approach is based on exploiting the zero-shot classification capability of the Large Language Models LLaMa-2, Tulu and Mistral, through prompt engineering. Our system ranked eighteenth in the model-aware setup with an accuracy of 78.4% and 29th in the model-agnostic setup with an accuracy of 76.9333%.
Search