Tzvika Hartman
2019
Audio De-identification - a New Entity Recognition Task
Ido Cohn
|
Itay Laish
|
Genady Beryozkin
|
Gang Li
|
Izhak Shafran
|
Idan Szpektor
|
Tzvika Hartman
|
Avinatan Hassidim
|
Yossi Matias
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)
Named Entity Recognition (NER) has been mostly studied in the context of written text. Specifically, NER is an important step in de-identification (de-ID) of medical records, many of which are recorded conversations between a patient and a doctor. In such recordings, audio spans with personal information should be redacted, similar to the redaction of sensitive character spans in de-ID for written text. The application of NER in the context of audio de-identification has yet to be fully investigated. To this end, we define the task of audio de-ID, in which audio spans with entity mentions should be detected. We then present our pipeline for this task, which involves Automatic Speech Recognition (ASR), NER on the transcript text, and text-to-audio alignment. Finally, we introduce a novel metric for audio de-ID and a new evaluation benchmark consisting of a large labeled segment of the Switchboard and Fisher audio datasets and detail our pipeline’s results on it.
A Joint Named-Entity Recognizer for Heterogeneous Tag-sets Using a Tag Hierarchy
Genady Beryozkin
|
Yoel Drori
|
Oren Gilon
|
Tzvika Hartman
|
Idan Szpektor
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
We study a variant of domain adaptation for named-entity recognition where multiple, heterogeneously tagged training sets are available. Furthermore, the test tag-set is not identical to any individual training tag-set. Yet, the relations between all tags are provided in a tag hierarchy, covering the test tags as a combination of training tags. This setting occurs when various datasets are created using different annotation schemes. This is also the case of extending a tag-set with a new tag by annotating only the new tag in a new dataset. We propose to use the given tag hierarchy to jointly learn a neural network that shares its tagging layer among all tag-sets. We compare this model to combining independent models and to a model based on the multitasking approach. Our experiments show the benefit of the tag-hierarchy model, especially when facing non-trivial consolidation of tag-sets.
Search
Fix data
Co-authors
- Genady Beryozkin 2
- Idan Szpektor 2
- Ido Cohn 1
- Yoel Drori 1
- Oren Gilon 1
- show all...