Web-crawled datasets are known to be noisy, as they feature a wide range of language use covering both user-generated and professionally edited content as well as noise originating from the crawling process. This article presents one solution to reduce this noise by using automatic register (genre) identification -whether the texts are, e.g., forum discussions, lyrical or how-to pages. We apply the multilingual register identification model by Rönnqvist et al. (2021) and label the widely used Oscar dataset. Additionally, we evaluate the model against eight new languages, showing that the performance is comparable to previous findings on a restricted set of languages. Finally, we present and apply a machine learning method for further cleaning text files originating from Web crawls from remains of boilerplate and other elements not belonging to the main text of the Web page. The register labeled and cleaned dataset covers 351 million documents in 14 languages and is available at
https://huggingface.co/datasets/TurkuNLP/register_oscar.
This article studies register classification of documents from the unrestricted web, such as news articles or opinion blogs, in a multilingual setting, exploring both the benefit of training on multiple languages and the capabilities for zero-shot cross-lingual transfer. While the wide range of linguistic variation found on the web poses challenges for register classification, recent studies have shown that good levels of cross-lingual transfer from the extensive English CORE corpus to other languages can be achieved. In this study, we show that training on multiple languages 1) benefits languages with limited amounts of register-annotated data, 2) on average achieves performance on par with monolingual models, and 3) greatly improves upon previous zero-shot results in Finnish, French and Swedish. The best results are achieved with the multilingual XLM-R model. As data, we use the CORE corpus series featuring register annotated data from the unrestricted web.
In this paper, we introduce the first fully manually annotated paraphrase corpus for Finnish containing 53,572 paraphrase pairs harvested from alternative subtitles and news headings. Out of all paraphrase pairs in our corpus 98% are manually classified to be paraphrases at least in their given context, if not in all contexts. Additionally, we establish a manual candidate selection method and demonstrate its feasibility in high quality paraphrase selection in terms of both cost and quality.
We explore cross-lingual transfer of register classification for web documents. Registers, that is, text varieties such as blogs or news are one of the primary predictors of linguistic variation and thus affect the automatic processing of language. We introduce two new register-annotated corpora, FreCORE and SweCORE, for French and Swedish. We demonstrate that deep pre-trained language models perform strongly in these languages and outperform previous state-of-the-art in English and Finnish. Specifically, we show 1) that zero-shot cross-lingual transfer from the large English CORE corpus can match or surpass previously published monolingual models, and 2) that lightweight monolingual classification requiring very little training data can reach or surpass our zero-shot performance. We further analyse classification results finding that certain registers continue to pose challenges in particular for cross-lingual transfer.
The web presents unprecedented opportunities for large-scale collection of text in many languages. However, two critical steps in the development of web corpora remain challenging: the identification of clean text from source HTML and the assignment of genre or register information to the documents. In this paper, we evaluate a multilingual approach to this end. Our starting points are the Swedish and French Common Crawl datasets gathered for the 2017 CoNLL shared task, particularly the URLs. We 1) fetch HTML pages based on the URLs and run boilerplate removal, 2) train a classifier to further clean out undesired text fragments, and 3) annotate text registers. We compare boilerplate removal against the CoNLL texts, and find an improvement. For the further cleaning of undesired material, the best results are achieved using Multilingual BERT with monolingual fine-tuning. However, our results are promising also in a cross-lingual setting, without fine-tuning on the target language. Finally, the register annotations show that most of the documents belong to a relatively small set of registers, which are relatively similar in the two languages. A number of additional flags in the annotation are, however, necessary to reflect the wide range of linguistic variation associated with the documents.