Varsha Balaji


2023

pdf bib
NLP_SSN_CSE@DravidianLangTech: Fake News Detection in Dravidian Languages using Transformer Models
Varsha Balaji | Shahul Hameed T | Bharathi B
Proceedings of the Third Workshop on Speech and Language Technologies for Dravidian Languages

The proposed system procures a systematic workflow in fake news identification utilizing machine learning classification in order to recognize and distinguish between real and made-up news. Using the Natural Language Toolkit (NLTK), the procedure starts with data preprocessing, which includes operations like text cleaning, tokenization, and stemming. This guarantees that the data is translated into an analytically-ready format. The preprocessed data is subsequently supplied into transformer models like M-BERT, Albert, XLNET, and BERT. By utilizing their extensive training on substantial datasets to identify complex patterns and significant traits that discriminate between authentic and false news pieces, these transformer models excel at capturing contextual information. The most successful model among those used is M-BERT, which boasts an astounding F1 score of 0.74. This supports M-BERT’s supremacy over its competitors in the field of fake news identification, outperforming them in terms of performance. The program can draw more precise conclusions and more effectively counteract the spread of false information because of its comprehension of contextual nuance. Organizations and platforms can strengthen their fake news detection systems and their attempts to stop the spread of false information by utilizing M-BERT’s capabilities.

pdf bib
CSE_SPEECH@LT-EDI-2023Automatic Speech Recognition vulnerable old-aged and transgender people in Tamil
Varsha Balaji | Archana Jp | Bharathi B
Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion

This paper centers on utilizing Automatic Speech Recognition (ASR) for defenseless old-aged and transgender people in Tamil. The Amrrs/wav2vec2-large-xlsr-53-tamil show accomplishes a Word Error Rate (WER) of 40%. By leveraging this demonstration, ASR innovation upgrades availability and inclusivity, helping those with discourse impedances, hearing impedances, and cognitive inabilities. Assist refinements are vital to diminish error and move forward the client involvement. This inquiry emphasizes the significance of ASR, particularly the Amrrs/wav2vec2-large-xlsr-53-tamil show, in encouraging successful communication and availability for defenseless populaces in Tamil.