Varun Nagaraj Rao
2021
A First Look: Towards Explainable TextVQA Models via Visual and Textual Explanations
Varun Nagaraj Rao
|
Xingjian Zhen
|
Karen Hovsepian
|
Mingwei Shen
Proceedings of the Third Workshop on Multimodal Artificial Intelligence
Explainable deep learning models are advantageous in many situations. Prior work mostly provide unimodal explanations through post-hoc approaches not part of the original system design. Explanation mechanisms also ignore useful textual information present in images. In this paper, we propose MTXNet, an end-to-end trainable multimodal architecture to generate multimodal explanations, which focuses on the text in the image. We curate a novel dataset TextVQA-X, containing ground truth visual and multi-reference textual explanations that can be leveraged during both training and evaluation. We then quantitatively show that training with multimodal explanations complements model performance and surpasses unimodal baselines by up to 7% in CIDEr scores and 2% in IoU. More importantly, we demonstrate that the multimodal explanations are consistent with human interpretations, help justify the models’ decision, and provide useful insights to help diagnose an incorrect prediction. Finally, we describe a real-world e-commerce application for using the generated multimodal explanations.
2020
Misspelling Detection from Noisy Product Images
Varun Nagaraj Rao
|
Mingwei Shen
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track
Misspellings are introduced on products either due to negligence or as an attempt to deliberately deceive stakeholders. This leads to a revenue loss for online sellers and fosters customer mistrust. Existing spelling research has primarily focused on advancement in misspelling correction and the approach for misspelling detection has remained the use of a large dictionary. The dictionary lookup results in the incorrect detection of several non-dictionary words as misspellings. In this paper, we propose a method to automatically detect misspellings from product images in an attempt to reduce false positive detections. We curate a large scale corpus, define a rich set of features and propose a novel model that leverages importance weighting to account for within class distributional variance. Finally, we experimentally validate this approach on both the curated corpus and an out-of-domain public dataset and show that it leads to a relative improvement of up to 20% in F1 score. The approach thus creates a more robust, generalized deployable solution and reduces reliance on large scale custom dictionaries used today.
Search