Washington Cunha
2024
Explaining the Hardest Errors of Contextual Embedding Based Classifiers
Claudio Moisés Valiense De Andrade
|
Washington Cunha
|
Guilherme Fonseca
|
Ana Clara Souza Pagano
|
Luana De Castro Santos
|
Adriana Silvina Pagano
|
Leonardo Chaves Dutra Da Rocha
|
Marcos André Gonçalves
Proceedings of the 28th Conference on Computational Natural Language Learning
We seek to explain the causes of the misclassification of the most challenging documents, namely those that no classifier using state-of-the-art, very semantically-separable contextual embedding representations managed to predict accurately. To do so, we propose a taxonomy of incorrect predictions, which we used to perform qualitative human evaluation. We posed two (research) questions, considering three sentiment datasets in two different domains – movie and product reviews. Evaluators with two different backgrounds evaluated documents by comparing the predominant sentiment assigned by the model to the label in the gold dataset in order to decide on a likely misclassification reason. Based on a high inter-evaluator agreement (81.7%), we observed significant differences between the product and movie review domains, such as the prevalence of ambivalence in product reviews and sarcasm in movie reviews. Our analysis also revealed an unexpectedly high rate of incorrect labeling in the gold dataset (up to 33%) and a significant amount of incorrect prediction by the model due to a series of linguistic phenomena (including amplified words, contrastive markers, comparative sentences, and references to world knowledge). Overall, our taxonomy and methodology allow us to explain between 80%-85% of the errors with high confidence (agreement) – enabling us to point out where future efforts to improve models should be concentrated.
2020
CluHTM - Semantic Hierarchical Topic Modeling based on CluWords
Felipe Viegas
|
Washington Cunha
|
Christian Gomes
|
Antônio Pereira
|
Leonardo Rocha
|
Marcos Goncalves
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Hierarchical Topic modeling (HTM) exploits latent topics and relationships among them as a powerful tool for data analysis and exploration. Despite advantages over traditional topic modeling, HTM poses its own challenges, such as (1) topic incoherence, (2) unreasonable (hierarchical) structure, and (3) issues related to the definition of the “ideal” number of topics and depth of the hierarchy. In this paper, we advance the state-of-the-art on HTM by means of the design and evaluation of CluHTM, a novel non-probabilistic hierarchical matrix factorization aimed at solving the specific issues of HTM. CluHTM’s novel contributions include: (i) the exploration of richer text representation that encapsulates both, global (dataset level) and local semantic information – when combined, these pieces of information help to solve the topic incoherence problem as well as issues related to the unreasonable structure; (ii) the exploitation of a stability analysis metric for defining the number of topics and the “shape” the hierarchical structure. In our evaluation, considering twelve datasets and seven state-of-the-art baselines, CluHTM outperformed the baselines in the vast majority of the cases, with gains of around 500% over the strongest state-of-the-art baselines. We also provide qualitative and quantitative statistical analyses of why our solution works so well.