Weidong Han


2024

pdf bib
VisLingInstruct: Elevating Zero-Shot Learning in Multi-Modal Language Models with Autonomous Instruction Optimization
Dongsheng Zhu | Daniel Tang | Weidong Han | Jinghui Lu | Yukun Zhao | Guoliang Xing | Junfeng Wang | Dawei Yin
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

This paper presents VisLingInstruct, a novel approach to advancing Multi-Modal Language Models (MMLMs) in zero-shot learning. Current MMLMs show impressive zero-shot abilities in multi-modal tasks, but their performance depends heavily on the quality of instructions. VisLingInstruct tackles this by autonomously evaluating and optimizing instructional texts through In-Context Learning, improving the synergy between visual perception and linguistic expression in MMLMs. Alongside this instructional advancement, we have also optimized the visual feature extraction modules in MMLMs, further augmenting their responsiveness to textual content. Our comprehensive experiments on MMLMs, based on FlanT5 and Vicuna, show that VisLingInstruct significantly improves zero-shot performance in visual multi-modal tasks. Notably, it achieves a 13.1% and 9% increase in accuracy over the prior state-of-the-art on the TextVQA and HatefulMemes datasets. Our main code is available at https://github.com/Zhudongsheng75/VisLingInstruct

2023

pdf bib
What Makes Pre-trained Language Models Better Zero-shot Learners?
Jinghui Lu | Dongsheng Zhu | Weidong Han | Rui Zhao | Brian Mac Namee | Fei Tan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current methods for prompt learning in zero-shot scenarios widely rely on a development set with sufficient human-annotated data to select the best-performing prompt template a posteriori. This is not ideal because in a real-world zero-shot scenario of practical relevance, no labelled data is available. Thus, we propose a simple yet effective method for screening reasonable prompt templates in zero-shot text classification: Perplexity Selection (Perplection). We hypothesize that language discrepancy can be used to measure the efficacy of prompt templates, and thereby develop a substantiated perplexity-based scheme allowing for forecasting the performance of prompt templates in advance. Experiments show that our method leads to improved prediction performance in a realistic zero-shot setting, eliminating the need for any labelled examples.