Weijie Jiang
Also published as: 伟杰 姜
2020
基于多头注意力和BiLSTM改进DAM模型的中文问答匹配方法(Chinese question answering method based on multi-head attention and BiLSTM improved DAM model)
Hanzhong Qin (秦汉忠)
|
Chongchong Yu (于重重)
|
Weijie Jiang (姜伟杰)
|
Xia Zhao (赵霞)
Proceedings of the 19th Chinese National Conference on Computational Linguistics
针对目前检索式多轮对话深度注意力机制模型DAM(Deep Attention Matching Network)候选回复细节不匹配和语义混淆的问题,本文提出基于多头注意力和双向长短时记忆网络(BiLSTM)改进DAM模型的中文问答匹配方法,该方法采用多头注意力机制,使模型有能力建模较长的多轮对话,更好的处理目标回复与上下文的匹配关系。此外,本文在特征融合过程中采用BiLSTM模型,通过捕获多轮对话中的序列依赖关系,进一步提升选择目标候选回复的准确率。本文在豆瓣和电商两个开放数据集上进行实验,实验性能均优于DAM基线模型,R10@1指标在含有词向量增强的情况下提升了1.5%。
2016
Combination of Convolutional and Recurrent Neural Network for Sentiment Analysis of Short Texts
Xingyou Wang
|
Weijie Jiang
|
Zhiyong Luo
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
Sentiment analysis of short texts is challenging because of the limited contextual information they usually contain. In recent years, deep learning models such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been applied to text sentiment analysis with comparatively remarkable results. In this paper, we describe a jointed CNN and RNN architecture, taking advantage of the coarse-grained local features generated by CNN and long-distance dependencies learned via RNN for sentiment analysis of short texts. Experimental results show an obvious improvement upon the state-of-the-art on three benchmark corpora, MR, SST1 and SST2, with 82.28%, 51.50% and 89.95% accuracy, respectively.