William Grosky


2018

pdf bib
Semantic Feature Structure Extraction From Documents Based on Extended Lexical Chains
Terry Ruas | William Grosky
Proceedings of the 9th Global Wordnet Conference

The meaning of a sentence in a document is more easily determined if its constituent words exhibit cohesion with respect to their individual semantics. This paper explores the degree of cohesion among a document’s words using lexical chains as a semantic representation of its meaning. Using a combination of diverse types of lexical chains, we develop a text document representation that can be used for semantic document retrieval. For our approach, we develop two kinds of lexical chains: (i) a multilevel flexible chain representation of the extracted semantic values, which is used to construct a fixed segmentation of these chains and constituent words in the text; and (ii) a fixed lexical chain obtained directly from the initial semantic representation from a document. The extraction and processing of concepts is performed using WordNet as a lexical database. The segmentation then uses these lexical chains to model the dispersion of concepts in the document. Representing each document as a high-dimensional vector, we use spherical k-means clustering to demonstrate that our approach performs better than previous techniques.
Search
Co-authors
Venues