William Watson


2025

pdf bib
LAW: Legal Agentic Workflows for Custody and Fund Services Contracts
William Watson | Nicole Cho | Nishan Srishankar | Zhen Zeng | Lucas Cecchi | Daniel Scott | Suchetha Siddagangappa | Rachneet Kaur | Tucker Balch | Manuela Veloso
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track

Legal contracts in the custody and fund services domain govern critical aspects such as key provider responsibilities, fee schedules, and indemnification rights. However, it is challenging for an off-the-shelf Large Language Model (LLM) to ingest these contracts due to the lengthy unstructured streams of text, limited LLM context windows, and complex legal jargon. To address these challenges, we introduce LAW (Legal Agentic Workflows for Custody and Fund Services Contracts). LAW features a modular design that responds to user queries by orchestrating a suite of domain-specific tools and text agents. Our experiments demonstrate that LAW, by integrating multiple specialized agents and tools, significantly outperforms the baseline. LAW excels particularly in complex tasks such as calculating a contract’s termination date, surpassing the baseline by 92.9% points. Furthermore, LAW offers a cost-effective alternative to traditional fine-tuned legal LLMs by leveraging reusable, domain-specific tools.

pdf bib
BuDDIE: A Business Document Dataset for Multi-task Information Extraction
Dongsheng Wang | Ran Zmigrod | Mathieu J. Sibue | Yulong Pei | Petr Babkin | Ivan Brugere | Xiaomo Liu | Nacho Navarro | Antony Papadimitriou | William Watson | Zhiqiang Ma | Armineh Nourbakhsh | Sameena Shah
Proceedings of the Joint Workshop of the 9th Financial Technology and Natural Language Processing (FinNLP), the 6th Financial Narrative Processing (FNP), and the 1st Workshop on Large Language Models for Finance and Legal (LLMFinLegal)

The field of visually rich document understanding (VRDU) aims to solve a multitude of well-researched NLP tasks in the multi-modal domain. Several datasets exist for research on specific tasks of VRDU, such as document classification (DC), key entity extraction (KEE), entity linking, visual question answering (VQA), inter alia. These datasets cover documents like invoices and receipts with sparse annotations such that they support one or two co-related tasks (e.g., entity extraction and entity linking). Unfortunately, only focusing on a single specific type of documents or task is not representative of how documents often need to be processed in the wild – where variety in style and requirements is expected. In this paper, we introduce BuDDIE: Business Document Dataset for Information Extraction, the first multi-task dataset of 1665 real-world business documents that contains rich and dense annotations for DC, KEE, and VQA. Our dataset consists of publicly available business entity documents from US state government websites. The documents are structured and vary in their style and layout across states and types (e.g., forms, certificates, reports, etc.). We provide data variety and quality metrics for BuDDIE as well as a series of baselines for each task. Our baselines cover traditional textual, multi-modal, and large language model approaches to VRDU.

2023

pdf bib
HiddenTables and PyQTax: A Cooperative Game and Dataset For TableQA to Ensure Scale and Data Privacy Across a Myriad of Taxonomies
William Watson | Nicole Cho | Tucker Balch | Manuela Veloso
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

A myriad of different Large Language Models (LLMs) face a common challenge in contextually analyzing table question-answering tasks. These challenges are engendered from (1) finite context windows for large tables, (2) multi-faceted discrepancies amongst tokenization patterns against cell boundaries, and (3) various limitations stemming from data confidentiality in the process of using external models such as gpt-35-turbo. We propose a cooperative game dubbed “HiddenTables” as a potential resolution to this challenge. In essence, “HiddenTables” is played between the code-generating LLM “Solver” and the “Oracle” which evaluates the ability of the LLM agents to solve TableQA tasks. This game is based on natural language schemas and importantly, ensures the security of the underlying data. We provide evidential experiments on a diverse set of tables that demonstrate an LLM’s collective inability to generalize and perform on complex queries, handle compositional dependencies, and align natural language to programmatic commands when concrete table schemas are provided. Unlike encoder-based models, we have pushed the boundaries of “HiddenTables” to not be limited by the number of rows - therefore we exhibit improved efficiency in prompt and completion tokens. Our infrastructure has spawned a new dataset “PyQTax” that spans across 116,671 question-table-answer triplets and provides additional fine-grained breakdowns and labels for varying question taxonomies. Therefore, in tandem with our academic contributions regarding LLMs’ deficiency in TableQA tasks, “HiddenTables” is a tactile manifestation of how LLMs can interact with massive datasets while ensuring data security and minimizing generation costs.

2019

pdf bib
Modeling Color Terminology Across Thousands of Languages
Arya D. McCarthy | Winston Wu | Aaron Mueller | William Watson | David Yarowsky
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

There is an extensive history of scholarship into what constitutes a “basic” color term, as well as a broadly attested acquisition sequence of basic color terms across many languages, as articulated in the seminal work of Berlin and Kay (1969). This paper employs a set of diverse measures on massively cross-linguistic data to operationalize and critique the Berlin and Kay color term hypotheses. Collectively, the 14 empirically-grounded computational linguistic metrics we design—as well as their aggregation—correlate strongly with both the Berlin and Kay basic/secondary color term partition (γ = 0.96) and their hypothesized universal acquisition sequence. The measures and result provide further empirical evidence from computational linguistics in support of their claims, as well as additional nuance: they suggest treating the partition as a spectrum instead of a dichotomy.