Wushour Slamu
2023
Empathy Intent Drives Empathy Detection
Liting Jiang
|
Di Wu
|
Bohui Mao
|
Yanbing Li
|
Wushour Slamu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Empathy plays an important role in the human dialogue. Detecting the empathetic direction expressed by the user is necessary for empathetic dialogue systems because it is highly relevant to understanding the user’s needs. Several studies have shown that empathy intent information improves the ability to response capacity of empathetic dialogue. However, the interaction between empathy detection and empathy intent recognition has not been explored. To this end, we invite 3 experts to manually annotate the healthy empathy detection datasets IEMPATHIZE and TwittEmp with 8 empathy intent labels, and perform joint training for the two tasks. Empirical study has shown that the introduction of empathy intent recognition task can improve the accuracy of empathy detection task, and we analyze possible reasons for this improvement. To make joint training of the two tasks more challenging, we propose a novel framework, Cascaded Label Signal Network, which uses the cascaded interactive attention module and the label signal enhancement module to capture feature exchange information between empathy and empathy intent representations. Experimental results show that our framework outperforms all baselines under both settings on the two datasets.
2020
Low-Resource Text Classification via Cross-lingual Language Model Fine-tuning
Xiuhong Li
|
Zhe Li
|
Jiabao Sheng
|
Wushour Slamu
Proceedings of the 19th Chinese National Conference on Computational Linguistics
Text classification tends to be difficult when data are inadequate considering the amount of manually labeled text corpora. For low-resource agglutinative languages including Uyghur, Kazakh, and Kyrgyz (UKK languages), in which words are manufactured via stems concatenated with several suffixes and stems are used as the representation of text content, this feature allows infinite derivatives vocabulary that leads to high uncertainty of writing forms and huge redundant features. There are major challenges of low-resource agglutinative text classification the lack of labeled data in a target domain and morphologic diversity of derivations in language structures. It is an effective solution which fine-tuning a pre-trained language model to provide meaningful and favorable-to-use feature extractors for downstream text classification tasks. To this end, we propose a low-resource agglutinative language model fine-tuning AgglutiFiT, specifically, we build a low-noise fine-tuning dataset by morphological analysis and stem extraction, then fine-tune the cross-lingual pre-training model on this dataset. Moreover, we propose an attention-based fine-tuning strategy that better selects relevant semantic and syntactic information from the pre-trained language model and uses those features on downstream text classification tasks. We evaluate our methods on nine Uyghur, Kazakh, and Kyrgyz classification datasets, where they have significantly better performance compared with several strong baselines.
Search
Co-authors
- Liting Jiang 1
- Di Wu 1
- Bohui Mao 1
- Yanbing Li 1
- Xiuhong Li 1
- show all...