Xia Zeng
2024
MAPLE: Micro Analysis of Pairwise Language Evolution for Few-Shot Claim Verification
Xia Zeng
|
Arkaitz Zubiaga
Findings of the Association for Computational Linguistics: EACL 2024
Claim verification is an essential step in the automated fact-checking pipeline which assesses the veracity of a claim against a piece of evidence. In this work, we explore the potential of few-shot claim verification, where only very limited data is available for supervision. We propose MAPLE (Micro Analysis of Pairwise Language Evolution), a pioneering approach that explores the alignment between a claim and its evidence with a small seq2seq model and a novel semantic measure. Its innovative utilization of micro language evolution path leverages unlabelled pairwise data to facilitate claim verification while imposing low demand on data annotations and computing resources. MAPLE demonstrates significant performance improvements over SOTA baselines SEED, PET and LLaMA 2 across three fact-checking datasets: FEVER, Climate FEVER, and SciFact. Data and code are available.
2023
Active PETs: Active Data Annotation Prioritisation for Few-Shot Claim Verification with Pattern Exploiting Training
Xia Zeng
|
Arkaitz Zubiaga
Findings of the Association for Computational Linguistics: EACL 2023
To mitigate the impact of the scarcity of labelled data on fact-checking systems, we focus on few-shot claim verification. Despite recent work on few-shot classification by proposing advanced language models, there is a dearth of research in data annotation prioritisation that improves the selection of the few shots to be labelled for optimal model performance. We propose Active PETs, a novel weighted approach that utilises an ensemble of Pattern Exploiting Training (PET) models based on various language models, to actively select unlabelled data as candidates for annotation. Using Active PETs for few-shot data selection shows consistent improvement over the baseline methods, on two technical fact-checking datasets and using six different pretrained language models. We show further improvement with Active PETs-o, which further integrates an oversampling strategy. Our approach enables effective selection of instances to be labelled where unlabelled data is abundant but resources for labelling are limited, leading to consistently improved few-shot claim verification performance. Our code is available.
2021
QMUL-SDS at SCIVER: Step-by-Step Binary Classification for Scientific Claim Verification
Xia Zeng
|
Arkaitz Zubiaga
Proceedings of the Second Workshop on Scholarly Document Processing
Scientific claim verification is a unique challenge that is attracting increasing interest. The SCIVER shared task offers a benchmark scenario to test and compare claim verification approaches by participating teams and consists in three steps: relevant abstract selection, rationale selection and label prediction. In this paper, we present team QMUL-SDS’s participation in the shared task. We propose an approach that performs scientific claim verification by doing binary classifications step-by-step. We trained a BioBERT-large classifier to select abstracts based on pairwise relevance assessments for each <claim, title of the abstract> and continued to train it to select rationales out of each retrieved abstract based on <claim, sentence>. We then propose a two-step setting for label prediction, i.e. first predicting “NOT_ENOUGH_INFO” or “ENOUGH_INFO”, then label those marked as “ENOUGH_INFO” as either “SUPPORT” or “CONTRADICT”. Compared to the baseline system, we achieve substantial improvements on the dev set. As a result, our team is the No. 4 team on the leaderboard.