Xuelin Liu
2025
What’s the most important value? INVP: INvestigating the Value Priorities of LLMs through Decision-making in Social Scenarios
Xuelin Liu
|
Pengyuan Liu
|
Dong Yu
Proceedings of the 31st International Conference on Computational Linguistics
As large language models (LLMs) demonstrate impressive performance in various tasks and are increasingly integrated into the decision-making process, ensuring they align with human values has become crucial. This paper highlights that value priorities—the relative importance of different value—play a pivotal role in the decision-making process. To explore the value priorities in LLMs, this paper introduces INVP, a framework for INvestigating Value Priorities through decision-making in social scenarios. The framework encompasses social scenarios including binary decision-making, covering both individual and collective decision-making contexts, and is based on Schwartz’s value theory for constructing value priorities. Using this framework, we construct a dataset, which contains a total of 1613 scenarios and 3226 decisions across 283 topics. We evaluate seven popular LLMs and the experimental results reveal commonalities in the value priorities across different LLMs, such as an emphasis on Universalism and Benevolence, while Power and Hedonism are typically given lower priority. This study provides fresh insights into understanding and enhancing the moral and value alignment of LLMs when making complex social decisions.
2024
Evaluating Moral Beliefs across LLMs through a Pluralistic Framework
Xuelin Liu
|
Yanfei Zhu
|
Shucheng Zhu
|
Pengyuan Liu
|
Ying Liu
|
Dong Yu
Findings of the Association for Computational Linguistics: EMNLP 2024
Proper moral beliefs are fundamental for language models, yet assessing these beliefs poses a significant challenge. This study introduces a novel three-module framework to evaluate the moral beliefs of four prominent large language models. Initially, we constructed a dataset containing 472 moral choice scenarios in Chinese, derived from moral words. The decision-making process of the models in these scenarios reveals their moral principle preferences. By ranking these moral choices, we discern the varying moral beliefs held by different language models. Additionally, through moral debates, we investigate the firmness of these models to their moral choices. Our findings indicate that English language models, namely ChatGPT and Gemini, closely mirror moral decisions of the sample of Chinese university students, demonstrating strong adherence to their choices and a preference for individualistic moral beliefs. In contrast, Chinese models such as Ernie and ChatGLM lean towards collectivist moral beliefs, exhibiting ambiguity in their moral choices and debates. This study also uncovers gender bias embedded within the moral beliefs of all examined language models. Our methodology offers an innovative means to assess moral beliefs in both artificial and human intelligence, facilitating a comparison of moral values across different cultures.