Xuesong Lu


2024

pdf bib
Two Issues with Chinese Spelling Correction and A Refinement Solution
Changxuan Sun | Linlin She | Xuesong Lu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

The Chinese Spelling Correction (CSC) task aims to detect and correct misspelled characters in Chinese text, and has received lots of attention in the past few years. Most recent studies adopt a Transformer-based model and leverage different features of characters such as pronunciation, glyph and contextual information to enhance the model’s ability to complete the task. Despite their state-of-the-art performance, we observe two issues that should be addressed to further advance the CSC task. First, the widely-used benchmark datasets SIGHAN13, SIGHAN14 and SIGHAN15, contain many mistakes. Hence the performance of existing models is not accurate and should be re-evaluated. Second, existing models seem to have reached a performance bottleneck, where the improvements on the SIGHAN’s testing sets are increasingly smaller and unstable. To deal with the two issues, we make two contributions: (1) we manually fix the SIGHAN datasets and re-evaluate four representative CSC models using the fixed datasets; (2) we analyze the new results to identify the spelling errors that none of the four models successfully corrects, based on which we propose a simple yet effective refinement solution. Experimental results show that our solution improves the four models in all metrics by notable margins.

2022

pdf bib
Multi-task Learning for Paraphrase Generation With Keyword and Part-of-Speech Reconstruction
Xuhang Xie | Xuesong Lu | Bei Chen
Findings of the Association for Computational Linguistics: ACL 2022

Paraphrase generation using deep learning has been a research hotspot of natural language processing in the past few years. While previous studies tackle the problem from different aspects, the essence of paraphrase generation is to retain the key semantics of the source sentence and rewrite the rest of the content. Inspired by this observation, we propose a novel two-stage model, PGKPR, for paraphrase generation with keyword and part-of-speech reconstruction. The rationale is to capture simultaneously the possible keywords of a source sentence and the relations between them to facilitate the rewriting. In the first stage, we identify the possible keywords using a prediction attribution technique, where the words obtaining higher attribution scores are more likely to be the keywords. In the second stage, we train a transformer-based model via multi-task learning for paraphrase generation. The novel learning task is the reconstruction of the keywords and part-of-speech tags, respectively, from a perturbed sequence of the source sentence. The learned encodings are then decoded to generate the paraphrase. We conduct the experiments on two commonly-used datasets, and demonstrate the superior performance of PGKPR over comparative models on multiple evaluation metrics.

pdf bib
CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure
Nuo Chen | Qiushi Sun | Renyu Zhu | Xiang Li | Xuesong Lu | Ming Gao
Findings of the Association for Computational Linguistics: EMNLP 2022

Code pre-trained models (CodePTMs) have recently demonstrated significant success in code intelligence. To interpret these models, some probing methods have been applied. However, these methods fail to consider the inherent characteristics of codes. In this paper, to address the problem, we propose a novel probing method CAT-probing to quantitatively interpret how CodePTMs attend code structure. We first denoise the input code sequences based on the token types pre-defined by the compilers to filter those tokens whose attention scores are too small. After that, we define a new metric CAT-score to measure the commonality between the token-level attention scores generated in CodePTMs and the pair-wise distances between corresponding AST nodes. The higher the CAT-score, the stronger the ability of CodePTMs to capture code structure. We conduct extensive experiments to integrate CAT-probing with representative CodePTMs for different programming languages. Experimental results show the effectiveness of CAT-probing in CodePTM interpretation. Our codes and data are publicly available at https://github.com/nchen909/CodeAttention.