Yajie Ye


2021

pdf bib
Universal Semantic Tagging for English and Mandarin Chinese
Wenxi Li | Yiyang Hou | Yajie Ye | Li Liang | Weiwei Sun
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Universal Semantic Tagging aims to provide lightweight unified analysis for all languages at the word level. Though the proposed annotation scheme is conceptually promising, the feasibility is only examined in four Indo–European languages. This paper is concerned with extending the annotation scheme to handle Mandarin Chinese and empirically study the plausibility of unifying meaning representations for multiple languages. We discuss a set of language-specific semantic phenomena, propose new annotation specifications and build a richly annotated corpus. The corpus consists of 1100 English–Chinese parallel sentences, where compositional semantic analysis is available for English, and another 1000 Chinese sentences which has enriched syntactic analysis. By means of the new annotations, we also evaluate a series of neural tagging models to gauge how successful semantic tagging can be: accuracies of 92.7% and 94.6% are obtained for Chinese and English respectively. The English tagging performance is remarkably better than the state-of-the-art by 7.7%.

2020

pdf bib
Exact yet Efficient Graph Parsing, Bi-directional Locality and the Constructivist Hypothesis
Yajie Ye | Weiwei Sun
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

A key problem in processing graph-based meaning representations is graph parsing, i.e. computing all possible derivations of a given graph according to a (competence) grammar. We demonstrate, for the first time, that exact graph parsing can be efficient for large graphs and with large Hyperedge Replacement Grammars (HRGs). The advance is achieved by exploiting locality as terminal edge-adjacency in HRG rules. In particular, we highlight the importance of 1) a terminal edge-first parsing strategy, 2) a categorization of a subclass of HRG, i.e. what we call Weakly Regular Graph Grammar, and 3) distributing argument-structures to both lexical and phrasal rules.

2019

pdf bib
Peking at MRP 2019: Factorization- and Composition-Based Parsing for Elementary Dependency Structures
Yufei Chen | Yajie Ye | Weiwei Sun
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning

We design, implement and evaluate two semantic parsers, which represent factorization- and composition-based approaches respectively, for Elementary Dependency Structures (EDS) at the CoNLL 2019 Shared Task on Cross-Framework Meaning Representation Parsing. The detailed evaluation of the two parsers gives us a new perception about parsing into linguistically enriched meaning representations: current neural EDS parsers are able to reach an accuracy at the inter-annotator agreement level in the same-epoch-and-domain setup.

2018

pdf bib
Language Generation via DAG Transduction
Yajie Ye | Weiwei Sun | Xiaojun Wan
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A DAG automaton is a formal device for manipulating graphs. By augmenting a DAG automaton with transduction rules, a DAG transducer has potential applications in fundamental NLP tasks. In this paper, we propose a novel DAG transducer to perform graph-to-program transformation. The target structure of our transducer is a program licensed by a declarative programming language rather than linguistic structures. By executing such a program, we can easily get a surface string. Our transducer is designed especially for natural language generation (NLG) from type-logical semantic graphs. Taking Elementary Dependency Structures, a format of English Resource Semantics, as input, our NLG system achieves a BLEU-4 score of 68.07. This remarkable result demonstrates the feasibility of applying a DAG transducer to resolve NLG, as well as the effectiveness of our design.