Yang Liner
Also published as: 麟儿 杨
2023
人工智能生成语言与人类语言对比研究——以ChatGPT为例(A Comparative Study of Language between Artificial Intelligence and Human: A Case Study of ChatGPT)
Zhu Junhui (君辉 朱)
|
Wang Mengyan (梦焰 王)
|
Yang Erhong (尔弘 杨)
|
Nie Jingran (锦燃 聂)
|
Wang Yujie (誉杰 王)
|
Yue Yan (岩 岳)
|
Yang Liner (麟儿 杨)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics
“基于自然语言生成技术的聊天机器人ChatGPT能够快速生成回答,但目前尚未对机器作答所使用的语言与人类真实语言在哪些方面存在差异进行充分研究。本研究提取并计算159个语言特征在人类和ChatGPT对中文开放域问题作答文本中的分布,使用随机森林、逻辑回归和支持向量机(SVM)三种机器学习算法训练人工智能探测器,并评估模型性能。实验结果表明,随机森林和SVM均能达到较高的分类准确率。通过对比分析,研究揭示了两种文本在描述性特征、字词常用度、字词多样性、句法复杂性、语篇凝聚力五个维度上语言表现的优势和不足。结果显示,两种文本之间的差异主要集中在描述性特征、字词常用度、字词多样性三个维度。”
Lexical Complexity Controlled Sentence Generation for Language Learning
Nie Jinran
|
Yang Liner
|
Chen Yun
|
Kong Cunliang
|
Zhu Junhui
|
Yang Erhong
Proceedings of the 22nd Chinese National Conference on Computational Linguistics
“Language teachers spend a lot of time developing good examples for language learners. For this reason, we define a new task for language learning, lexical complexity controlledsentence generation, which requires precise control over the lexical complexity in thekeywords to examples generation and better fluency and semantic consistency. The chal-lenge of this task is to generate fluent sentences only using words of given complexitylevels. We propose a simple but effective approach for this task based on complexityembedding while controlling sentence length and syntactic complexity at the decodingstage. Compared with potential solutions, our approach fuses the representations of theword complexity levels into the model to get better control of lexical complexity. Andwe demonstrate the feasibility of the approach for both training models from scratch andfine-tuning the pre-trained models. To facilitate the research, we develop two datasetsin English and Chinese respectively, on which extensive experiments are conducted. Ex-perimental results show that our approach provides more precise control over lexicalcomplexity, as well as better fluency and diversity.”
Search
Fix data
Co-authors
- Yang Erhong (尔弘 杨) 2
- Zhu Junhui (君辉 朱) 2
- Kong Cunliang 1
- Nie Jingran (锦燃 聂) 1
- Nie Jinran 1
- show all...
Venues
- ccl2