Yao Deng
2020
Efficient Transfer Learning for Quality Estimation with Bottleneck Adapter Layer
Hao Yang
|
Minghan Wang
|
Ning Xie
|
Ying Qin
|
Yao Deng
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation
The Predictor-Estimator framework for quality estimation (QE) is commonly used for its strong performance. Where the predictor and estimator works on feature extraction and quality evaluation, respectively. However, training the predictor from scratch is computationally expensive. In this paper, we propose an efficient transfer learning framework to transfer knowledge from NMT dataset into QE models. A Predictor-Estimator alike model named BAL-QE is also proposed, aiming to extract high quality features with pre-trained NMT model, and make classification with a fine-tuned Bottleneck Adapter Layer (BAL). The experiment shows that BAL-QE achieves 97% of the SOTA performance in WMT19 En-De and En-Ru QE tasks by only training 3% of parameters within 4 hours on 4 Titan XP GPUs. Compared with the commonly used NuQE baseline, BAL-QE achieves 47% (En-Ru) and 75% (En-De) of performance promotions.
Unified Humor Detection Based on Sentence-pair Augmentation and Transfer Learning
Minghan Wang
|
Hao Yang
|
Ying Qin
|
Shiliang Sun
|
Yao Deng
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation
We propose a unified multilingual model for humor detection which can be trained under a transfer learning framework. 1) The model is built based on pre-trained multilingual BERT, thereby is able to make predictions on Chinese, Russian and Spanish corpora. 2) We step out from single sentence classification and propose sequence-pair prediction which considers the inter-sentence relationship. 3) We propose the Sentence Discrepancy Prediction (SDP) loss, aiming to measure the semantic discrepancy of the sequence-pair, which often appears in the setup and punchline of a joke. Our method achieves two SoTA and a second-place on three humor detection corpora in three languages (Russian, Spanish and Chinese), and also improves F1-score by 4%-6%, which demonstrates the effectiveness of it in humor detection tasks.
The HW-TSC Video Speech Translation System at IWSLT 2020
Minghan Wang
|
Hao Yang
|
Yao Deng
|
Ying Qin
|
Lizhi Lei
|
Daimeng Wei
|
Hengchao Shang
|
Ning Xie
|
Xiaochun Li
|
Jiaxian Guo
Proceedings of the 17th International Conference on Spoken Language Translation
The paper presents details of our system in the IWSLT Video Speech Translation evaluation. The system works in a cascade form, which contains three modules: 1) A proprietary ASR system. 2) A disfluency correction system aims to remove interregnums or other disfluent expressions with a fine-tuned BERT and a series of rule-based algorithms. 3) An NMT System based on the Transformer and trained with massive publicly available corpus.