Yaqi Zhang


2025

pdf bib
LLM Sensitivity Challenges in Abusive Language Detection: Instruction-Tuned vs. Human Feedback
Yaqi Zhang | Viktor Hangya | Alexander Fraser
Proceedings of the 31st International Conference on Computational Linguistics

The capacity of large language models (LLMs) to understand and distinguish socially unacceptable texts enables them to play a promising role in abusive language detection. However, various factors can affect their sensitivity. In this work, we test whether LLMs have an unintended bias in abusive language detection, i.e., whether they predict more or less of a given abusive class than expected in zero-shot settings. Our results show that instruction-tuned LLMs tend to under-predict positive classes, since datasets used for tuning are dominated by the negative class. On the contrary, models fine-tuned with human feedback tend to be overly sensitive. In an exploratory approach to mitigate these issues, we show that label frequency in the prompt helps with the significant over-prediction.

2024

pdf bib
A Study of the Class Imbalance Problem in Abusive Language Detection
Yaqi Zhang | Viktor Hangya | Alexander Fraser
Proceedings of the 8th Workshop on Online Abuse and Harms (WOAH 2024)

Abusive language detection has drawn increasing interest in recent years. However, a less systematically explored obstacle is label imbalance, i.e., the amount of abusive data is much lower than non-abusive data, leading to performance issues. The aim of this work is to conduct a comprehensive comparative study of popular methods for addressing the class imbalance issue. We explore 10 well-known approaches on 8 datasets with distinct characteristics: binary or multi-class, moderately or largely imbalanced, focusing on various types of abuse, etc. Additionally, we pro-pose two novel methods specialized for abuse detection: AbusiveLexiconAug and ExternalDataAug, which enrich the training data using abusive lexicons and external abusive datasets, respectively. We conclude that: 1) our AbusiveLexiconAug approach, random oversampling, and focal loss are the most versatile methods on various datasets; 2) focal loss tends to yield peak model performance; 3) oversampling and focal loss provide promising results for binary datasets and small multi-class sets, while undersampling and weighted cross-entropy are more suitable for large multi-class sets; 4) most methods are sensitive to hyperparameters, yet our suggested choice of hyperparameters provides a good starting point.