Yerbolat Khassanov
2022
KazNERD: Kazakh Named Entity Recognition Dataset
Rustem Yeshpanov
|
Yerbolat Khassanov
|
Huseyin Atakan Varol
Proceedings of the Thirteenth Language Resources and Evaluation Conference
We present the development of a dataset for Kazakh named entity recognition. The dataset was built as there is a clear need for publicly available annotated corpora in Kazakh, as well as annotation guidelines containing straightforward—but rigorous—rules and examples. The dataset annotation, based on the IOB2 scheme, was carried out on television news text by two native Kazakh speakers under the supervision of the first author. The resulting dataset contains 112,702 sentences and 136,333 annotations for 25 entity classes. State-of-the-art machine learning models to automatise Kazakh named entity recognition were also built, with the best-performing model achieving an exact match F1-score of 97.22% on the test set. The annotated dataset, guidelines, and codes used to train the models are freely available for download under the CC BY 4.0 licence from https://github.com/IS2AI/KazNERD.
KazakhTTS2: Extending the Open-Source Kazakh TTS Corpus With More Data, Speakers, and Topics
Saida Mussakhojayeva
|
Yerbolat Khassanov
|
Huseyin Atakan Varol
Proceedings of the Thirteenth Language Resources and Evaluation Conference
We present an expanded version of our previously released Kazakh text-to-speech (KazakhTTS) synthesis corpus. In the new KazakhTTS2 corpus, the overall size has increased from 93 hours to 271 hours, the number of speakers has risen from two to five (three females and two males), and the topic coverage has been diversified with the help of new sources, including a book and Wikipedia articles. This corpus is necessary for building high-quality TTS systems for Kazakh, a Central Asian agglutinative language from the Turkic family, which presents several linguistic challenges. We describe the corpus construction process and provide the details of the training and evaluation procedures for the TTS system. Our experimental results indicate that the constructed corpus is sufficient to build robust TTS models for real-world applications, with a subjective mean opinion score ranging from 3.6 to 4.2 for all the five speakers. We believe that our corpus will facilitate speech and language research for Kazakh and other Turkic languages, which are widely considered to be low-resource due to the limited availability of free linguistic data. The constructed corpus, code, and pretrained models are publicly available in our GitHub repository.
2021
A Crowdsourced Open-Source Kazakh Speech Corpus and Initial Speech Recognition Baseline
Yerbolat Khassanov
|
Saida Mussakhojayeva
|
Almas Mirzakhmetov
|
Alen Adiyev
|
Mukhamet Nurpeiissov
|
Huseyin Atakan Varol
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
We present an open-source speech corpus for the Kazakh language. The Kazakh speech corpus (KSC) contains around 332 hours of transcribed audio comprising over 153,000 utterances spoken by participants from different regions and age groups, as well as both genders. It was carefully inspected by native Kazakh speakers to ensure high quality. The KSC is the largest publicly available database developed to advance various Kazakh speech and language processing applications. In this paper, we first describe the data collection and preprocessing procedures followed by a description of the database specifications. We also share our experience and challenges faced during the database construction, which might benefit other researchers planning to build a speech corpus for a low-resource language. To demonstrate the reliability of the database, we performed preliminary speech recognition experiments. The experimental results imply that the quality of audio and transcripts is promising (2.8% character error rate and 8.7% word error rate on the test set). To enable experiment reproducibility and ease the corpus usage, we also released an ESPnet recipe for our speech recognition models.