Yicheng Fu
2022
P-Tuning: Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks
Xiao Liu
|
Kaixuan Ji
|
Yicheng Fu
|
Weng Tam
|
Zhengxiao Du
|
Zhilin Yang
|
Jie Tang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Prompt tuning, which only tunes continuous prompts with a frozen language model, substantially reduces per-task storage and memory usage at training. However, in the context of NLU, prior work reveals that prompt tuning does not perform well for normal-sized pretrained models. We also find that existing methods of prompt tuning cannot handle hard sequence labeling tasks, indicating a lack of universality. We present a novel empirical finding that properly optimized prompt tuning can be universally effective across a wide range of model scales and NLU tasks. It matches the performance of finetuning while having only 0.1%-3% tuned parameters. Our method P-Tuning v2 is an implementation of Deep Prompt Tuning (CITATION) optimized and adapted for NLU. Given the universality and simplicity of P-Tuning v2, we believe it can serve as an alternative to finetuning and a strong baseline for future research.
Search
Fix data
Co-authors
- Zhengxiao Du 1
- Kaixuan Ji 1
- Xiao Liu 1
- Weng Tam 1
- Jie Tang 1
- show all...
Venues
- acl1