Yifan Gong


2024

pdf bib
Rethinking Token Reduction for State Space Models
Zheng Zhan | Yushu Wu | Zhenglun Kong | Changdi Yang | Yifan Gong | Xuan Shen | Xue Lin | Pu Zhao | Yanzhi Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recent advancements in State Space Models (SSMs) have attracted significant interest, particularly in models optimized for parallel training and handling long-range dependencies. Architectures like Mamba have scaled to billions of parameters with selective SSM. To facilitate broader applications using Mamba, exploring its efficiency is crucial. While token reduction techniques offer a straightforward post-training strategy, we find that applying existing methods directly to SSMs leads to substantial performance drops. Through insightful analysis, we identify the reasons for this failure and the limitations of current techniques. In response, we propose a tailored, unified post-training token reduction method for SSMs. Our approach integrates token importance and similarity, thus taking advantage of both pruning and merging, to devise a fine-grained intra-layer token reduction strategy. Extensive experiments show that our method improves the average accuracy by 5.7% to 13.1% on six benchmarks with Mamba-2 compared to existing methods, while significantly reducing computational demands and memory requirements.

pdf bib
Value FULCRA: Mapping Large Language Models to the Multidimensional Spectrum of Basic Human Value
Jing Yao | Xiaoyuan Yi | Yifan Gong | Xiting Wang | Xing Xie
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Value alignment is crucial for the responsible development of Large Language Models (LLMs). However, how to define values in this context remains largely unexplored. Existing work mainly specifies values as risk criteria formulated in the AI community, e.g., fairness and privacy protection, suffering from poor clarity, adaptability and transparency. Leveraging basic values established in humanity and social science that are compatible with values across cultures, this paper introduces a novel value space spanned by multiple basic value dimensions and proposes BaseAlign, a corresponding value alignment paradigm. Applying the representative Schwartz’s Theory of Basic Values as an instantiation, we construct FULCRA, a dataset consisting of 20k (LLM output, value vector) pairs. LLMs’ outputs are mapped into the K-dim value space beyond simple binary labels, by identifying their underlying priorities for these value dimensions. Extensive analysis and experiments on FULCRA: (1) reveal the essential relation between basic values and LLMs’ behaviors, (2) demonstrate that our paradigm with basic values not only covers existing risks but also anticipates the unidentified ones, and (3) manifest BaseAlign’s superiority in alignment performance with less data, paving the way for addressing the above three challenges.