Yinping Yang
2020
SocCogCom at SemEval-2020 Task 11: Characterizing and Detecting Propaganda Using Sentence-Level Emotional Salience Features
Gangeshwar Krishnamurthy
|
Raj Kumar Gupta
|
Yinping Yang
Proceedings of the Fourteenth Workshop on Semantic Evaluation
This paper describes a system developed for detecting propaganda techniques from news articles. We focus on examining how emotional salience features extracted from a news segment can help to characterize and predict the presence of propaganda techniques. Correlation analyses surfaced interesting patterns that, for instance, the “loaded language” and “slogan” techniques are negatively associated with valence and joy intensity but are positively associated with anger, fear and sadness intensity. In contrast, “flag waving” and “appeal to fear-prejudice” have the exact opposite pattern. Through predictive experiments, results further indicate that whereas BERT-only features obtained F1-score of 0.548, emotion intensity features and BERT hybrid features were able to obtain F1-score of 0.570, when a simple feedforward network was used as the classifier in both settings. On gold test data, our system obtained micro-averaged F1-score of 0.558 on overall detection efficacy over fourteen propaganda techniques. It performed relatively well in detecting “loaded language” (F1 = 0.772), “name calling and labeling” (F1 = 0.673), “doubt” (F1 = 0.604) and “flag waving” (F1 = 0.543).
2018
CrystalFeel at SemEval-2018 Task 1: Understanding and Detecting Emotion Intensity using Affective Lexicons
Raj Kumar Gupta
|
Yinping Yang
Proceedings of the 12th International Workshop on Semantic Evaluation
While sentiment and emotion analysis has received a considerable amount of research attention, the notion of understanding and detecting the intensity of emotions is relatively less explored. This paper describes a system developed for predicting emotion intensity in tweets. Given a Twitter message, CrystalFeel uses features derived from parts-of-speech, n-grams, word embedding, and multiple affective lexicons including Opinion Lexicon, SentiStrength, AFFIN, NRC Emotion & Hash Emotion, and our in-house developed EI Lexicons to predict the degree of the intensity associated with fear, anger, sadness, and joy in the tweet. We found that including the affective lexicons-based features allowed the system to obtain strong prediction performance, while revealing interesting emotion word-level and message-level associations. On gold test data, CrystalFeel obtained Pearson correlations of 0.717 on average emotion intensity and of 0.816 on sentiment intensity.
2017
CrystalNest at SemEval-2017 Task 4: Using Sarcasm Detection for Enhancing Sentiment Classification and Quantification
Raj Kumar Gupta
|
Yinping Yang
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
This paper describes a system developed for a shared sentiment analysis task and its subtasks organized by SemEval-2017. A key feature of our system is the embedded ability to detect sarcasm in order to enhance the performance of sentiment classification. We first constructed an affect-cognition-sociolinguistics sarcasm features model and trained a SVM-based classifier for detecting sarcastic expressions from general tweets. For sentiment prediction, we developed CrystalNest– a two-level cascade classification system using features combining sarcasm score derived from our sarcasm classifier, sentiment scores from Alchemy, NRC lexicon, n-grams, word embedding vectors, and part-of-speech features. We found that the sarcasm detection derived features consistently benefited key sentiment analysis evaluation metrics, in different degrees, across four subtasks A-D.