Youssef Mohamed
2024
No Culture Left Behind: ArtELingo-28, a Benchmark of WikiArt with Captions in 28 Languages
Youssef Mohamed
|
Runjia Li
|
Ibrahim Said Ahmad
|
Kilichbek Haydarov
|
Philip Torr
|
Kenneth Church
|
Mohamed Elhoseiny
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Research in vision and language has made considerable progress thanks to benchmarks such as COCO. COCO captions focused on unambiguous facts in English; ArtEmis introduced subjective emotions and ArtELingo introduced some multilinguality (Chinese and Arabic). However we believe there should be more multilinguality. Hence, we present ArtELingo-28, a vision-language benchmark that spans 28 languages and encompasses approximately 200,000 annotations (140 annotations per image). Traditionally, vision research focused on unambiguous class labels, whereas ArtELingo-28 emphasizes diversity of opinions over languages and cultures. The challenge is to build machine learning systems that assign emotional captions to images. Baseline results will be presented for three novel conditions: Zero-Shot, Few-Shot and One-vs-All Zero-Shot. We find that cross-lingual transfer is more successful for culturally-related languages. Data and code will be made publicly available.
2022
ArtELingo: A Million Emotion Annotations of WikiArt with Emphasis on Diversity over Language and Culture
Youssef Mohamed
|
Mohamed Abdelfattah
|
Shyma Alhuwaider
|
Feifan Li
|
Xiangliang Zhang
|
Kenneth Church
|
Mohamed Elhoseiny
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
This paper introduces ArtELingo, a new benchmark and dataset, designed to encourage work on diversity across languages and cultures. Following ArtEmis, a collection of 80k artworks from WikiArt with 0.45M emotion labels and English-only captions, ArtELingo adds another 0.79M annotations in Arabic and Chinese, plus 4.8K in Spanish to evaluate “cultural-transfer” performance. 51K artworks have 5 annotations or more in 3 languages. This diversity makes it possible to study similarities and differences across languages and cultures. Further, we investigate captioning tasks, and find diversity improves the performance of baseline models. ArtELingo is publicly available at ‘www.artelingo.org‘ with standard splits and baseline models. We hope our work will help ease future research on multilinguality and culturally-aware AI.