Yuanzheng Wang


2024

pdf bib
RoCEL: Advancing Table Entity Linking through Distinctive Row and Column Contexts
Yuanzheng Wang | Yixing Fan | Jiafeng Guo | Ruqing Zhang | Xueqi Cheng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Table entity linking (TEL) aims to map entity mentions in the table to their corresponding entities in a knowledge base (KB). The core of this task is to leverage structured contexts, specifically row and column contexts, to enhance the semantics of mentions in entity disambiguation. Most entity linking (EL) methods primarily focus on understanding sequential text contexts, making it difficult to adapt to the row and column structure of tables. Additionally, existing methods for TEL indiscriminately mix row and column contexts together, overlooking their semantic differences. In this paper, we explicitly distinguish the modeling of row and column contexts, and propose a method called RoCEL to capture their distinct semantics. Specifically, for row contexts in tables, we take the attention mechanism to learn the implicit relational dependencies between each cell and the mention. For column contexts in tables, we employ a set-wise encoder to learn the categorical information about the group of mentions. At last, we merge both contexts to obtain the final mention embedding for link prediction. Experiments on four benchmarks show that our approach outperforms the state-of-the-art (SOTA) baseline by about 1.5% on the in-domain dataset, and by 3.7% on average across three out-of-domain datasets.