Yuchu Lin
2024
NovelTrans: System for WMT24 Discourse-Level Literary Translation
Yuchen Liu
|
Yutong Yao
|
Runzhe Zhan
|
Yuchu Lin
|
Derek F. Wong
Proceedings of the Ninth Conference on Machine Translation
This paper describes our submission system, NovelTrans, from NLP²CT and DeepTranx for the WMT24 Discourse-Level Literary Translation Task in Chinese-English, Chinese-German, and Chinese-Russian language pairs under unconstrained conditions. For our primary system, three translations are done by GPT4o using three different settings of additional information and a terminology table generated by online models. The final result is composed of sentences that have the highest xCOMET score compared with the corresponding sentences in other results. Our system achieved an xCOMET score of 79.14 which is higher than performing a direct chapter-level translation on our dataset.