Yue Chang
2024
Multi-Loss Fusion: Angular and Contrastive Integration for Machine-Generated Text Detection
Iqra Zahid
|
Yue Chang
|
Tharindu Madusanka
|
Youcheng Sun
|
Riza Batista-Navarro
Findings of the Association for Computational Linguistics: EMNLP 2024
Modern natural language generation (NLG) systems have led to the development of synthetic human-like open-ended texts, posing concerns as to who the original author of a text is. To address such concerns, we introduce DeB-Ang: the utilisation of a custom DeBERTa model with angular loss and contrastive loss functions for effective class separation in neural text classification tasks. We expand the application of this model on binary machine-generated text detection and multi-class neural authorship attribution. We demonstrate improved performance on many benchmark datasets whereby the accuracy for machine-generated text detection was increased by as much as 38.04% across all datasets.