Yue Dai


2022

pdf bib
ImageArg: A Multi-modal Tweet Dataset for Image Persuasiveness Mining
Zhexiong Liu | Meiqi Guo | Yue Dai | Diane Litman
Proceedings of the 9th Workshop on Argument Mining

The growing interest in developing corpora of persuasive texts has promoted applications in automated systems, e.g., debating and essay scoring systems; however, there is little prior work mining image persuasiveness from an argumentative perspective. To expand persuasiveness mining into a multi-modal realm, we present a multi-modal dataset, ImageArg, consisting of annotations of image persuasiveness in tweets. The annotations are based on a persuasion taxonomy we developed to explore image functionalities and the means of persuasion. We benchmark image persuasiveness tasks on ImageArg using widely-used multi-modal learning methods. The experimental results show that our dataset offers a useful resource for this rich and challenging topic, and there is ample room for modeling improvement.